hamedkhaledi
commited on
Commit
•
816ca68
1
Parent(s):
0b5f626
Update model
Browse files- loss.tsv +11 -0
- pytorch_model.bin +3 -0
- training.log +522 -0
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
+
1 15:21:48 0 0.1000 0.27953692015655984
|
3 |
+
2 15:31:22 0 0.1000 0.15365227826273328
|
4 |
+
3 15:41:06 0 0.1000 0.12001519515322241
|
5 |
+
4 15:50:54 0 0.1000 0.10328522111398844
|
6 |
+
5 16:00:45 0 0.1000 0.09241386713466632
|
7 |
+
6 16:10:29 0 0.1000 0.08505490679055881
|
8 |
+
7 16:20:25 0 0.1000 0.07861811519301767
|
9 |
+
8 16:30:21 0 0.1000 0.07341135664633389
|
10 |
+
9 16:40:13 0 0.1000 0.06911533349940868
|
11 |
+
10 16:50:01 0 0.1000 0.06593435410093888
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:698a7ca2b501a853c807de4defc42901968d932393a86d6a636d5ff4346dc54a
|
3 |
+
size 494428971
|
training.log
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-08-06 15:12:29,180 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-08-06 15:12:29,182 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(42000, 768, padding_idx=0)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(word_dropout): WordDropout(p=0.05)
|
311 |
+
(locked_dropout): LockedDropout(p=0.5)
|
312 |
+
(rnn): LSTM(768, 512, batch_first=True, bidirectional=True)
|
313 |
+
(linear): Linear(in_features=1024, out_features=30, bias=True)
|
314 |
+
(beta): 1.0
|
315 |
+
(weights): None
|
316 |
+
(weight_tensor) None
|
317 |
+
)"
|
318 |
+
2022-08-06 15:12:29,182 ----------------------------------------------------------------------------------------------------
|
319 |
+
2022-08-06 15:12:29,183 Corpus: "Corpus: 24000 train + 3000 dev + 3000 test sentences"
|
320 |
+
2022-08-06 15:12:29,183 ----------------------------------------------------------------------------------------------------
|
321 |
+
2022-08-06 15:12:29,183 Parameters:
|
322 |
+
2022-08-06 15:12:29,183 - learning_rate: "0.1"
|
323 |
+
2022-08-06 15:12:29,183 - mini_batch_size: "8"
|
324 |
+
2022-08-06 15:12:29,183 - patience: "3"
|
325 |
+
2022-08-06 15:12:29,183 - anneal_factor: "0.5"
|
326 |
+
2022-08-06 15:12:29,183 - max_epochs: "10"
|
327 |
+
2022-08-06 15:12:29,183 - shuffle: "True"
|
328 |
+
2022-08-06 15:12:29,183 - train_with_dev: "True"
|
329 |
+
2022-08-06 15:12:29,183 - batch_growth_annealing: "False"
|
330 |
+
2022-08-06 15:12:29,183 ----------------------------------------------------------------------------------------------------
|
331 |
+
2022-08-06 15:12:29,183 Model training base path: "data/pos-Uppsala/model"
|
332 |
+
2022-08-06 15:12:29,183 ----------------------------------------------------------------------------------------------------
|
333 |
+
2022-08-06 15:12:29,183 Device: cuda:0
|
334 |
+
2022-08-06 15:12:29,183 ----------------------------------------------------------------------------------------------------
|
335 |
+
2022-08-06 15:12:29,184 Embeddings storage mode: gpu
|
336 |
+
2022-08-06 15:12:29,185 ----------------------------------------------------------------------------------------------------
|
337 |
+
2022-08-06 15:13:18,972 epoch 1 - iter 337/3375 - loss 0.74289984 - samples/sec: 54.18 - lr: 0.100000
|
338 |
+
2022-08-06 15:14:15,036 epoch 1 - iter 674/3375 - loss 0.53599298 - samples/sec: 48.11 - lr: 0.100000
|
339 |
+
2022-08-06 15:15:12,610 epoch 1 - iter 1011/3375 - loss 0.45754038 - samples/sec: 46.85 - lr: 0.100000
|
340 |
+
2022-08-06 15:16:09,043 epoch 1 - iter 1348/3375 - loss 0.40111208 - samples/sec: 47.79 - lr: 0.100000
|
341 |
+
2022-08-06 15:17:04,137 epoch 1 - iter 1685/3375 - loss 0.36712663 - samples/sec: 48.96 - lr: 0.100000
|
342 |
+
2022-08-06 15:17:58,402 epoch 1 - iter 2022/3375 - loss 0.34049225 - samples/sec: 49.70 - lr: 0.100000
|
343 |
+
2022-08-06 15:18:55,276 epoch 1 - iter 2359/3375 - loss 0.32076226 - samples/sec: 47.42 - lr: 0.100000
|
344 |
+
2022-08-06 15:19:49,979 epoch 1 - iter 2696/3375 - loss 0.31015506 - samples/sec: 49.31 - lr: 0.100000
|
345 |
+
2022-08-06 15:20:48,410 epoch 1 - iter 3033/3375 - loss 0.29391699 - samples/sec: 46.16 - lr: 0.100000
|
346 |
+
2022-08-06 15:21:47,572 epoch 1 - iter 3370/3375 - loss 0.27989028 - samples/sec: 45.59 - lr: 0.100000
|
347 |
+
2022-08-06 15:21:48,555 ----------------------------------------------------------------------------------------------------
|
348 |
+
2022-08-06 15:21:48,555 EPOCH 1 done: loss 0.2795 - lr 0.1000000
|
349 |
+
2022-08-06 15:21:48,555 BAD EPOCHS (no improvement): 0
|
350 |
+
2022-08-06 15:21:48,555 ----------------------------------------------------------------------------------------------------
|
351 |
+
2022-08-06 15:22:45,590 epoch 2 - iter 337/3375 - loss 0.18085661 - samples/sec: 47.29 - lr: 0.100000
|
352 |
+
2022-08-06 15:23:42,698 epoch 2 - iter 674/3375 - loss 0.17216272 - samples/sec: 47.23 - lr: 0.100000
|
353 |
+
2022-08-06 15:24:38,534 epoch 2 - iter 1011/3375 - loss 0.16694117 - samples/sec: 48.31 - lr: 0.100000
|
354 |
+
2022-08-06 15:25:36,464 epoch 2 - iter 1348/3375 - loss 0.16500505 - samples/sec: 46.56 - lr: 0.100000
|
355 |
+
2022-08-06 15:26:32,174 epoch 2 - iter 1685/3375 - loss 0.16167195 - samples/sec: 48.42 - lr: 0.100000
|
356 |
+
2022-08-06 15:27:28,418 epoch 2 - iter 2022/3375 - loss 0.15991464 - samples/sec: 47.96 - lr: 0.100000
|
357 |
+
2022-08-06 15:28:30,730 epoch 2 - iter 2359/3375 - loss 0.15942296 - samples/sec: 43.29 - lr: 0.100000
|
358 |
+
2022-08-06 15:29:27,444 epoch 2 - iter 2696/3375 - loss 0.15779417 - samples/sec: 47.56 - lr: 0.100000
|
359 |
+
2022-08-06 15:30:25,187 epoch 2 - iter 3033/3375 - loss 0.15553239 - samples/sec: 46.71 - lr: 0.100000
|
360 |
+
2022-08-06 15:31:21,714 epoch 2 - iter 3370/3375 - loss 0.15352182 - samples/sec: 47.72 - lr: 0.100000
|
361 |
+
2022-08-06 15:31:22,712 ----------------------------------------------------------------------------------------------------
|
362 |
+
2022-08-06 15:31:22,712 EPOCH 2 done: loss 0.1537 - lr 0.1000000
|
363 |
+
2022-08-06 15:31:22,712 BAD EPOCHS (no improvement): 0
|
364 |
+
2022-08-06 15:31:22,712 ----------------------------------------------------------------------------------------------------
|
365 |
+
2022-08-06 15:32:23,790 epoch 3 - iter 337/3375 - loss 0.11867195 - samples/sec: 44.16 - lr: 0.100000
|
366 |
+
2022-08-06 15:33:21,161 epoch 3 - iter 674/3375 - loss 0.11878234 - samples/sec: 47.02 - lr: 0.100000
|
367 |
+
2022-08-06 15:34:20,702 epoch 3 - iter 1011/3375 - loss 0.11942785 - samples/sec: 45.31 - lr: 0.100000
|
368 |
+
2022-08-06 15:35:18,259 epoch 3 - iter 1348/3375 - loss 0.11958903 - samples/sec: 46.86 - lr: 0.100000
|
369 |
+
2022-08-06 15:36:16,967 epoch 3 - iter 1685/3375 - loss 0.11914369 - samples/sec: 45.94 - lr: 0.100000
|
370 |
+
2022-08-06 15:37:13,560 epoch 3 - iter 2022/3375 - loss 0.11916365 - samples/sec: 47.66 - lr: 0.100000
|
371 |
+
2022-08-06 15:38:10,624 epoch 3 - iter 2359/3375 - loss 0.12096981 - samples/sec: 47.27 - lr: 0.100000
|
372 |
+
2022-08-06 15:39:10,034 epoch 3 - iter 2696/3375 - loss 0.11987245 - samples/sec: 45.40 - lr: 0.100000
|
373 |
+
2022-08-06 15:40:07,877 epoch 3 - iter 3033/3375 - loss 0.11973164 - samples/sec: 46.63 - lr: 0.100000
|
374 |
+
2022-08-06 15:41:05,610 epoch 3 - iter 3370/3375 - loss 0.12003917 - samples/sec: 46.72 - lr: 0.100000
|
375 |
+
2022-08-06 15:41:06,450 ----------------------------------------------------------------------------------------------------
|
376 |
+
2022-08-06 15:41:06,450 EPOCH 3 done: loss 0.1200 - lr 0.1000000
|
377 |
+
2022-08-06 15:41:06,450 BAD EPOCHS (no improvement): 0
|
378 |
+
2022-08-06 15:41:06,451 ----------------------------------------------------------------------------------------------------
|
379 |
+
2022-08-06 15:42:04,442 epoch 4 - iter 337/3375 - loss 0.09805702 - samples/sec: 46.51 - lr: 0.100000
|
380 |
+
2022-08-06 15:43:05,164 epoch 4 - iter 674/3375 - loss 0.09888569 - samples/sec: 44.42 - lr: 0.100000
|
381 |
+
2022-08-06 15:44:02,546 epoch 4 - iter 1011/3375 - loss 0.10053644 - samples/sec: 47.01 - lr: 0.100000
|
382 |
+
2022-08-06 15:45:01,384 epoch 4 - iter 1348/3375 - loss 0.10119574 - samples/sec: 45.84 - lr: 0.100000
|
383 |
+
2022-08-06 15:46:00,229 epoch 4 - iter 1685/3375 - loss 0.10374826 - samples/sec: 45.84 - lr: 0.100000
|
384 |
+
2022-08-06 15:46:59,791 epoch 4 - iter 2022/3375 - loss 0.10405522 - samples/sec: 45.28 - lr: 0.100000
|
385 |
+
2022-08-06 15:47:57,607 epoch 4 - iter 2359/3375 - loss 0.10411718 - samples/sec: 46.65 - lr: 0.100000
|
386 |
+
2022-08-06 15:48:55,410 epoch 4 - iter 2696/3375 - loss 0.10394934 - samples/sec: 46.66 - lr: 0.100000
|
387 |
+
2022-08-06 15:49:56,783 epoch 4 - iter 3033/3375 - loss 0.10374714 - samples/sec: 43.95 - lr: 0.100000
|
388 |
+
2022-08-06 15:50:54,113 epoch 4 - iter 3370/3375 - loss 0.10333066 - samples/sec: 47.05 - lr: 0.100000
|
389 |
+
2022-08-06 15:50:54,961 ----------------------------------------------------------------------------------------------------
|
390 |
+
2022-08-06 15:50:54,961 EPOCH 4 done: loss 0.1033 - lr 0.1000000
|
391 |
+
2022-08-06 15:50:54,961 BAD EPOCHS (no improvement): 0
|
392 |
+
2022-08-06 15:50:54,961 ----------------------------------------------------------------------------------------------------
|
393 |
+
2022-08-06 15:51:52,151 epoch 5 - iter 337/3375 - loss 0.08744228 - samples/sec: 47.17 - lr: 0.100000
|
394 |
+
2022-08-06 15:52:49,910 epoch 5 - iter 674/3375 - loss 0.08896766 - samples/sec: 46.70 - lr: 0.100000
|
395 |
+
2022-08-06 15:53:50,861 epoch 5 - iter 1011/3375 - loss 0.09000325 - samples/sec: 44.25 - lr: 0.100000
|
396 |
+
2022-08-06 15:54:48,357 epoch 5 - iter 1348/3375 - loss 0.09103779 - samples/sec: 46.91 - lr: 0.100000
|
397 |
+
2022-08-06 15:55:48,122 epoch 5 - iter 1685/3375 - loss 0.09107958 - samples/sec: 45.13 - lr: 0.100000
|
398 |
+
2022-08-06 15:56:49,324 epoch 5 - iter 2022/3375 - loss 0.09135469 - samples/sec: 44.07 - lr: 0.100000
|
399 |
+
2022-08-06 15:57:47,393 epoch 5 - iter 2359/3375 - loss 0.09172710 - samples/sec: 46.45 - lr: 0.100000
|
400 |
+
2022-08-06 15:58:45,694 epoch 5 - iter 2696/3375 - loss 0.09238154 - samples/sec: 46.27 - lr: 0.100000
|
401 |
+
2022-08-06 15:59:42,885 epoch 5 - iter 3033/3375 - loss 0.09253470 - samples/sec: 47.16 - lr: 0.100000
|
402 |
+
2022-08-06 16:00:44,492 epoch 5 - iter 3370/3375 - loss 0.09240350 - samples/sec: 43.78 - lr: 0.100000
|
403 |
+
2022-08-06 16:00:45,327 ----------------------------------------------------------------------------------------------------
|
404 |
+
2022-08-06 16:00:45,328 EPOCH 5 done: loss 0.0924 - lr 0.1000000
|
405 |
+
2022-08-06 16:00:45,328 BAD EPOCHS (no improvement): 0
|
406 |
+
2022-08-06 16:00:45,328 ----------------------------------------------------------------------------------------------------
|
407 |
+
2022-08-06 16:01:42,167 epoch 6 - iter 337/3375 - loss 0.08075428 - samples/sec: 47.46 - lr: 0.100000
|
408 |
+
2022-08-06 16:02:39,509 epoch 6 - iter 674/3375 - loss 0.08099115 - samples/sec: 47.04 - lr: 0.100000
|
409 |
+
2022-08-06 16:03:37,688 epoch 6 - iter 1011/3375 - loss 0.08140463 - samples/sec: 46.36 - lr: 0.100000
|
410 |
+
2022-08-06 16:04:38,640 epoch 6 - iter 1348/3375 - loss 0.08175190 - samples/sec: 44.25 - lr: 0.100000
|
411 |
+
2022-08-06 16:05:35,459 epoch 6 - iter 1685/3375 - loss 0.08233525 - samples/sec: 47.47 - lr: 0.100000
|
412 |
+
2022-08-06 16:06:33,941 epoch 6 - iter 2022/3375 - loss 0.08333964 - samples/sec: 46.12 - lr: 0.100000
|
413 |
+
2022-08-06 16:07:34,247 epoch 6 - iter 2359/3375 - loss 0.08370656 - samples/sec: 44.73 - lr: 0.100000
|
414 |
+
2022-08-06 16:08:32,546 epoch 6 - iter 2696/3375 - loss 0.08503503 - samples/sec: 46.27 - lr: 0.100000
|
415 |
+
2022-08-06 16:09:30,447 epoch 6 - iter 3033/3375 - loss 0.08526801 - samples/sec: 46.58 - lr: 0.100000
|
416 |
+
2022-08-06 16:10:29,216 epoch 6 - iter 3370/3375 - loss 0.08506276 - samples/sec: 45.90 - lr: 0.100000
|
417 |
+
2022-08-06 16:10:29,946 ----------------------------------------------------------------------------------------------------
|
418 |
+
2022-08-06 16:10:29,947 EPOCH 6 done: loss 0.0851 - lr 0.1000000
|
419 |
+
2022-08-06 16:10:29,947 BAD EPOCHS (no improvement): 0
|
420 |
+
2022-08-06 16:10:29,947 ----------------------------------------------------------------------------------------------------
|
421 |
+
2022-08-06 16:11:31,042 epoch 7 - iter 337/3375 - loss 0.07328964 - samples/sec: 44.15 - lr: 0.100000
|
422 |
+
2022-08-06 16:12:31,218 epoch 7 - iter 674/3375 - loss 0.07556648 - samples/sec: 44.82 - lr: 0.100000
|
423 |
+
2022-08-06 16:13:28,468 epoch 7 - iter 1011/3375 - loss 0.07578294 - samples/sec: 47.11 - lr: 0.100000
|
424 |
+
2022-08-06 16:14:28,318 epoch 7 - iter 1348/3375 - loss 0.07581855 - samples/sec: 45.07 - lr: 0.100000
|
425 |
+
2022-08-06 16:15:27,119 epoch 7 - iter 1685/3375 - loss 0.07674717 - samples/sec: 45.87 - lr: 0.100000
|
426 |
+
2022-08-06 16:16:25,205 epoch 7 - iter 2022/3375 - loss 0.07800463 - samples/sec: 46.44 - lr: 0.100000
|
427 |
+
2022-08-06 16:17:25,635 epoch 7 - iter 2359/3375 - loss 0.07788540 - samples/sec: 44.64 - lr: 0.100000
|
428 |
+
2022-08-06 16:18:25,934 epoch 7 - iter 2696/3375 - loss 0.07823310 - samples/sec: 44.73 - lr: 0.100000
|
429 |
+
2022-08-06 16:19:25,742 epoch 7 - iter 3033/3375 - loss 0.07862489 - samples/sec: 45.10 - lr: 0.100000
|
430 |
+
2022-08-06 16:20:24,514 epoch 7 - iter 3370/3375 - loss 0.07864779 - samples/sec: 45.89 - lr: 0.100000
|
431 |
+
2022-08-06 16:20:25,316 ----------------------------------------------------------------------------------------------------
|
432 |
+
2022-08-06 16:20:25,317 EPOCH 7 done: loss 0.0786 - lr 0.1000000
|
433 |
+
2022-08-06 16:20:25,317 BAD EPOCHS (no improvement): 0
|
434 |
+
2022-08-06 16:20:25,317 ----------------------------------------------------------------------------------------------------
|
435 |
+
2022-08-06 16:21:23,040 epoch 8 - iter 337/3375 - loss 0.06876001 - samples/sec: 46.73 - lr: 0.100000
|
436 |
+
2022-08-06 16:22:25,028 epoch 8 - iter 674/3375 - loss 0.06867038 - samples/sec: 43.51 - lr: 0.100000
|
437 |
+
2022-08-06 16:23:25,046 epoch 8 - iter 1011/3375 - loss 0.07011779 - samples/sec: 44.94 - lr: 0.100000
|
438 |
+
2022-08-06 16:24:23,287 epoch 8 - iter 1348/3375 - loss 0.07118411 - samples/sec: 46.31 - lr: 0.100000
|
439 |
+
2022-08-06 16:25:24,939 epoch 8 - iter 1685/3375 - loss 0.07159055 - samples/sec: 43.75 - lr: 0.100000
|
440 |
+
2022-08-06 16:26:23,316 epoch 8 - iter 2022/3375 - loss 0.07167687 - samples/sec: 46.21 - lr: 0.100000
|
441 |
+
2022-08-06 16:27:22,234 epoch 8 - iter 2359/3375 - loss 0.07190781 - samples/sec: 45.78 - lr: 0.100000
|
442 |
+
2022-08-06 16:28:20,921 epoch 8 - iter 2696/3375 - loss 0.07263123 - samples/sec: 45.96 - lr: 0.100000
|
443 |
+
2022-08-06 16:29:21,637 epoch 8 - iter 3033/3375 - loss 0.07345723 - samples/sec: 44.42 - lr: 0.100000
|
444 |
+
2022-08-06 16:30:20,403 epoch 8 - iter 3370/3375 - loss 0.07338627 - samples/sec: 45.90 - lr: 0.100000
|
445 |
+
2022-08-06 16:30:21,375 ----------------------------------------------------------------------------------------------------
|
446 |
+
2022-08-06 16:30:21,375 EPOCH 8 done: loss 0.0734 - lr 0.1000000
|
447 |
+
2022-08-06 16:30:21,375 BAD EPOCHS (no improvement): 0
|
448 |
+
2022-08-06 16:30:21,376 ----------------------------------------------------------------------------------------------------
|
449 |
+
2022-08-06 16:31:18,803 epoch 9 - iter 337/3375 - loss 0.06314787 - samples/sec: 46.97 - lr: 0.100000
|
450 |
+
2022-08-06 16:32:16,661 epoch 9 - iter 674/3375 - loss 0.06638022 - samples/sec: 46.62 - lr: 0.100000
|
451 |
+
2022-08-06 16:33:15,745 epoch 9 - iter 1011/3375 - loss 0.06547021 - samples/sec: 45.65 - lr: 0.100000
|
452 |
+
2022-08-06 16:34:14,632 epoch 9 - iter 1348/3375 - loss 0.06593581 - samples/sec: 45.81 - lr: 0.100000
|
453 |
+
2022-08-06 16:35:13,668 epoch 9 - iter 1685/3375 - loss 0.06772817 - samples/sec: 45.69 - lr: 0.100000
|
454 |
+
2022-08-06 16:36:15,567 epoch 9 - iter 2022/3375 - loss 0.06808051 - samples/sec: 43.58 - lr: 0.100000
|
455 |
+
2022-08-06 16:37:16,651 epoch 9 - iter 2359/3375 - loss 0.06796916 - samples/sec: 44.16 - lr: 0.100000
|
456 |
+
2022-08-06 16:38:14,513 epoch 9 - iter 2696/3375 - loss 0.06906572 - samples/sec: 46.62 - lr: 0.100000
|
457 |
+
2022-08-06 16:39:13,107 epoch 9 - iter 3033/3375 - loss 0.06917054 - samples/sec: 46.03 - lr: 0.100000
|
458 |
+
2022-08-06 16:40:12,475 epoch 9 - iter 3370/3375 - loss 0.06913866 - samples/sec: 45.43 - lr: 0.100000
|
459 |
+
2022-08-06 16:40:13,344 ----------------------------------------------------------------------------------------------------
|
460 |
+
2022-08-06 16:40:13,344 EPOCH 9 done: loss 0.0691 - lr 0.1000000
|
461 |
+
2022-08-06 16:40:13,344 BAD EPOCHS (no improvement): 0
|
462 |
+
2022-08-06 16:40:13,345 ----------------------------------------------------------------------------------------------------
|
463 |
+
2022-08-06 16:41:11,629 epoch 10 - iter 337/3375 - loss 0.05727560 - samples/sec: 46.28 - lr: 0.100000
|
464 |
+
2022-08-06 16:42:09,047 epoch 10 - iter 674/3375 - loss 0.06063155 - samples/sec: 46.98 - lr: 0.100000
|
465 |
+
2022-08-06 16:43:09,515 epoch 10 - iter 1011/3375 - loss 0.06369582 - samples/sec: 44.61 - lr: 0.100000
|
466 |
+
2022-08-06 16:44:07,978 epoch 10 - iter 1348/3375 - loss 0.06421773 - samples/sec: 46.14 - lr: 0.100000
|
467 |
+
2022-08-06 16:45:07,015 epoch 10 - iter 1685/3375 - loss 0.06397856 - samples/sec: 45.69 - lr: 0.100000
|
468 |
+
2022-08-06 16:46:05,736 epoch 10 - iter 2022/3375 - loss 0.06424947 - samples/sec: 45.93 - lr: 0.100000
|
469 |
+
2022-08-06 16:47:06,945 epoch 10 - iter 2359/3375 - loss 0.06511606 - samples/sec: 44.07 - lr: 0.100000
|
470 |
+
2022-08-06 16:48:05,819 epoch 10 - iter 2696/3375 - loss 0.06574495 - samples/sec: 45.82 - lr: 0.100000
|
471 |
+
2022-08-06 16:49:03,924 epoch 10 - iter 3033/3375 - loss 0.06552271 - samples/sec: 46.42 - lr: 0.100000
|
472 |
+
2022-08-06 16:50:00,641 epoch 10 - iter 3370/3375 - loss 0.06594147 - samples/sec: 47.56 - lr: 0.100000
|
473 |
+
2022-08-06 16:50:01,493 ----------------------------------------------------------------------------------------------------
|
474 |
+
2022-08-06 16:50:01,493 EPOCH 10 done: loss 0.0659 - lr 0.1000000
|
475 |
+
2022-08-06 16:50:01,493 BAD EPOCHS (no improvement): 0
|
476 |
+
2022-08-06 16:50:02,708 ----------------------------------------------------------------------------------------------------
|
477 |
+
2022-08-06 16:50:02,709 Testing using last state of model ...
|
478 |
+
2022-08-06 16:53:40,214 0.9632 0.9632 0.9632 0.9632
|
479 |
+
2022-08-06 16:53:40,215
|
480 |
+
Results:
|
481 |
+
- F-score (micro) 0.9632
|
482 |
+
- F-score (macro) 0.9031
|
483 |
+
- Accuracy 0.9632
|
484 |
+
|
485 |
+
By class:
|
486 |
+
precision recall f1-score support
|
487 |
+
|
488 |
+
N_SING 0.9691 0.9565 0.9627 30553
|
489 |
+
P 0.9560 0.9937 0.9745 9951
|
490 |
+
DELM 0.9936 0.9906 0.9921 8122
|
491 |
+
ADJ 0.9205 0.9152 0.9179 7466
|
492 |
+
CON 0.9892 0.9799 0.9845 6823
|
493 |
+
N_PL 0.9476 0.9642 0.9558 5163
|
494 |
+
V_PA 0.9729 0.9746 0.9737 2873
|
495 |
+
V_PRS 0.9825 0.9898 0.9861 2841
|
496 |
+
PRO 0.9656 0.9455 0.9555 2258
|
497 |
+
NUM 0.9937 0.9933 0.9935 2232
|
498 |
+
DET 0.9423 0.9698 0.9559 1853
|
499 |
+
CLITIC 0.9992 1.0000 0.9996 1259
|
500 |
+
V_PP 0.9699 0.9741 0.9720 1158
|
501 |
+
V_SUB 0.9620 0.9573 0.9596 1031
|
502 |
+
ADV 0.7784 0.8182 0.7978 880
|
503 |
+
ADV_TIME 0.9126 0.9611 0.9363 489
|
504 |
+
V_AUX 0.9869 0.9974 0.9921 379
|
505 |
+
ADJ_SUP 0.9851 0.9815 0.9833 270
|
506 |
+
ADJ_CMPR 0.9246 0.9534 0.9388 193
|
507 |
+
ADJ_INO 0.7294 0.7381 0.7337 168
|
508 |
+
ADV_NEG 0.9034 0.8792 0.8912 149
|
509 |
+
ADV_I 0.8926 0.7714 0.8276 140
|
510 |
+
FW 0.6893 0.5772 0.6283 123
|
511 |
+
ADV_COMP 0.8267 0.8158 0.8212 76
|
512 |
+
ADV_LOC 0.9722 0.9589 0.9655 73
|
513 |
+
V_IMP 0.7292 0.6250 0.6731 56
|
514 |
+
PREV 0.9286 0.8125 0.8667 32
|
515 |
+
INT 0.9231 0.5000 0.6486 24
|
516 |
+
|
517 |
+
micro avg 0.9632 0.9632 0.9632 86635
|
518 |
+
macro avg 0.9195 0.8926 0.9031 86635
|
519 |
+
weighted avg 0.9633 0.9632 0.9631 86635
|
520 |
+
samples avg 0.9632 0.9632 0.9632 86635
|
521 |
+
|
522 |
+
2022-08-06 16:53:40,215 ----------------------------------------------------------------------------------------------------
|