Microsoft/phi-1.5 finetuned using airoboros-3.1-no-mathjson-max-1k dataset.

Qlora is used. Adapter is merged.

SFT code: https://github.com/habanoz/qlora.git

Command used:

accelerate launch $BASE_DIR/qlora/train.py \
  --model_name_or_path $BASE_MODEL \
  --working_dir $BASE_DIR/$OUTPUT_NAME-checkpoints \
  --output_dir $BASE_DIR/$OUTPUT_NAME-peft \
  --merged_output_dir $BASE_DIR/$OUTPUT_NAME \
  --final_output_dir $BASE_DIR/$OUTPUT_NAME-final \
  --num_train_epochs 1 \
  --logging_steps 1 \
  --save_strategy steps \
  --save_steps 120 \
  --save_total_limit 2 \
  --data_seed 11422 \
  --evaluation_strategy steps \
  --per_device_eval_batch_size 4 \
  --eval_dataset_size 0.01 \
  --eval_steps 120 \
  --max_new_tokens 1024 \
  --dataloader_num_workers 3 \
  --logging_strategy steps \
  --do_train \
  --do_eval \
  --lora_r 64 \
  --lora_alpha 16 \
  --lora_modules all \
  --bits 4 \
  --double_quant \
  --quant_type nf4 \
  --lr_scheduler_type constant \
  --dataset habanoz/airoboros-3.1-no-mathjson-max-1k \
  --dataset_format airoboros_chat \
  --model_max_len 1024 \
  --per_device_train_batch_size 1 \
  --gradient_accumulation_steps 16 \
  --learning_rate 1e-5 \
  --adam_beta2 0.999 \
  --max_grad_norm 0.3 \
  --lora_dropout 0.0 \
  --weight_decay 0.0 \
  --seed 11422 \
  --gradient_checkpointing False \
  --use_flash_attention_2 \
  --ddp_find_unused_parameters False \
  --trust_remote_code True
Downloads last month
8
Safetensors
Model size
1.42B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train habanoz/phi-1_5-lr-5-1epch-airoboros3.1-1k-instruct-V1