qwen2.5-0.5b-expo-L2EXPO-noES-0.1
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise_weighted dataset. It achieves the following results on the evaluation set:
- Loss: 0.4111
- Logps: -89.2333
- Logits: -1.4016
- Objective: 0.4056
- Dpo Loss: 0.6787
- Regularize: 0.4056
- Ranking Simple: 0.5352
- Ranking Idealized: 0.6025
- Ranking Idealized Expo: 0.5233
- Wo Beta: 16.2455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4024 | 0.1417 | 50 | 0.4110 | -90.5653 | -1.4391 | 0.4097 | 0.6885 | 0.4097 | 0.5264 | 0.6025 | 0.5233 | 16.2893 |
0.3435 | 0.2834 | 100 | 0.4067 | -93.4765 | -1.4915 | 0.4041 | 0.6822 | 0.4041 | 0.5305 | 0.6025 | 0.5233 | 16.4079 |
0.3184 | 0.4251 | 150 | 0.4066 | -91.6151 | -1.4215 | 0.4020 | 0.6786 | 0.4020 | 0.5342 | 0.6025 | 0.5233 | 16.5344 |
0.2935 | 0.5668 | 200 | 0.4100 | -91.5667 | -1.3884 | 0.4060 | 0.6791 | 0.4060 | 0.5336 | 0.6025 | 0.5233 | 16.4082 |
0.2854 | 0.7085 | 250 | 0.4143 | -90.3560 | -1.4712 | 0.4087 | 0.6802 | 0.4087 | 0.5342 | 0.6025 | 0.5233 | 16.3706 |
0.249 | 0.8503 | 300 | 0.4091 | -89.8744 | -1.4821 | 0.4058 | 0.6798 | 0.4058 | 0.5336 | 0.6025 | 0.5233 | 16.2613 |
0.2289 | 0.9920 | 350 | 0.4118 | -89.6124 | -1.4819 | 0.4047 | 0.6786 | 0.4047 | 0.5362 | 0.6025 | 0.5233 | 16.3965 |
0.2105 | 1.1337 | 400 | 0.4060 | -88.2954 | -1.3976 | 0.4024 | 0.6778 | 0.4024 | 0.5352 | 0.6025 | 0.5233 | 16.3633 |
0.1773 | 1.2754 | 450 | 0.4122 | -89.4120 | -1.3974 | 0.4051 | 0.6770 | 0.4051 | 0.5373 | 0.6025 | 0.5233 | 16.2171 |
0.1579 | 1.4171 | 500 | 0.4140 | -89.1284 | -1.3760 | 0.4073 | 0.6801 | 0.4073 | 0.5378 | 0.6025 | 0.5233 | 16.2211 |
0.1534 | 1.5588 | 550 | 0.4124 | -87.6963 | -1.3890 | 0.4048 | 0.6781 | 0.4048 | 0.5388 | 0.6025 | 0.5233 | 16.2085 |
0.1396 | 1.7005 | 600 | 0.4126 | -88.8736 | -1.4152 | 0.4050 | 0.6781 | 0.4050 | 0.5357 | 0.6025 | 0.5233 | 16.2840 |
0.1433 | 1.8422 | 650 | 0.4109 | -89.4824 | -1.3995 | 0.4050 | 0.6781 | 0.4050 | 0.5357 | 0.6025 | 0.5233 | 16.2822 |
0.1202 | 1.9839 | 700 | 0.4113 | -89.1037 | -1.3927 | 0.4061 | 0.6790 | 0.4061 | 0.5336 | 0.6025 | 0.5233 | 16.2384 |
0.0927 | 2.1256 | 750 | 0.4115 | -89.5013 | -1.4006 | 0.4053 | 0.6785 | 0.4053 | 0.5362 | 0.6025 | 0.5233 | 16.1916 |
0.0932 | 2.2674 | 800 | 0.4109 | -88.9918 | -1.4040 | 0.4055 | 0.6784 | 0.4055 | 0.5357 | 0.6025 | 0.5233 | 16.2422 |
0.076 | 2.4091 | 850 | 0.4112 | -89.0524 | -1.4000 | 0.4056 | 0.6788 | 0.4056 | 0.5352 | 0.6025 | 0.5233 | 16.2403 |
0.0802 | 2.5508 | 900 | 0.4114 | -89.2338 | -1.4061 | 0.4059 | 0.6787 | 0.4059 | 0.5352 | 0.6025 | 0.5233 | 16.2290 |
0.0696 | 2.6925 | 950 | 0.4111 | -89.2200 | -1.4037 | 0.4056 | 0.6787 | 0.4056 | 0.5347 | 0.6025 | 0.5233 | 16.2510 |
0.0722 | 2.8342 | 1000 | 0.4111 | -89.2367 | -1.4019 | 0.4057 | 0.6787 | 0.4057 | 0.5352 | 0.6025 | 0.5233 | 16.2505 |
0.0733 | 2.9759 | 1050 | 0.4111 | -89.2333 | -1.4016 | 0.4056 | 0.6787 | 0.4056 | 0.5352 | 0.6025 | 0.5233 | 16.2455 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 8
Model tree for hZzy/qwen2.5-0.5b-expo-L2EXPO-noES-0.1
Base model
hZzy/qwen2.5-0.5b-sft-news-IFT