hZzy's picture
End of training
e5a985e verified
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise
model-index:
  - name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-500-5e6
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-500-5e6

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:

  • Loss: 2234.1663
  • Logps: -82.0980
  • Logits: -0.6597
  • Objective: 2265.8794
  • Dpo Loss: 1141.8063
  • Regularize: 2265.8794
  • Ranking Simple: 0.5124
  • Ranking Idealized: 0.5093
  • Ranking Idealized Expo: 0.5093

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo
737.2396 0.2834 50 421.9188 -92.0238 -1.3125 428.8152 221.7374 428.8152 0.5093 0.5093 0.5093
1559.0492 0.5668 100 1500.8584 -82.7953 -1.0226 1492.8041 733.0991 1492.8041 0.5072 0.5093 0.5093
1544.2886 0.8503 150 1796.8794 -83.3935 -0.8486 1837.2159 936.6276 1837.2159 0.4990 0.5093 0.5093
1387.1779 1.1337 200 1946.6445 -81.0039 -0.8010 1988.5870 1018.1060 1988.5870 0.5010 0.5093 0.5093
1257.5858 1.4171 250 2056.7834 -79.5628 -0.8937 2078.7400 1059.1973 2078.7400 0.5031 0.5093 0.5093
1062.9078 1.7005 300 2170.6946 -79.7273 -0.7209 2202.7805 1115.7678 2202.7805 0.5031 0.5093 0.5093
1015.0369 1.9839 350 2227.1714 -83.5951 -0.6739 2262.3740 1156.4828 2262.3740 0.5124 0.5093 0.5093
849.8354 2.2674 400 2210.6672 -83.3996 -0.6954 2238.0188 1124.7909 2238.0188 0.5155 0.5093 0.5093
749.1392 2.5508 450 2232.3298 -80.8498 -0.6204 2283.4070 1157.1035 2283.4070 0.5134 0.5093 0.5093
663.6063 2.8342 500 2235.3254 -81.1036 -0.6463 2277.7737 1152.4823 2277.7737 0.5083 0.5093 0.5093
547.2687 3.1176 550 2247.6917 -81.3519 -0.6623 2265.5049 1133.8970 2265.5049 0.5145 0.5093 0.5093
451.9043 3.4010 600 2235.0491 -81.8093 -0.6081 2263.8958 1143.4464 2263.8958 0.5114 0.5093 0.5093
383.0005 3.6845 650 2233.3066 -81.6021 -0.6417 2277.5994 1148.9692 2277.5994 0.5124 0.5093 0.5093
316.0834 3.9679 700 2236.5557 -82.0739 -0.6441 2269.0681 1143.5380 2269.0681 0.5134 0.5093 0.5093
230.1662 4.2513 750 2241.1863 -82.1894 -0.6514 2272.5417 1146.1786 2272.5417 0.5124 0.5093 0.5093
198.8015 4.5347 800 2236.1729 -82.0761 -0.6625 2266.9819 1141.6486 2266.9819 0.5134 0.5093 0.5093
189.8097 4.8181 850 2234.3398 -82.0995 -0.6599 2266.1760 1141.9380 2266.1760 0.5124 0.5093 0.5093

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1