metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise
model-index:
- name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-500-5e6
results: []
qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-500-5e6
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:
- Loss: 2234.1663
- Logps: -82.0980
- Logits: -0.6597
- Objective: 2265.8794
- Dpo Loss: 1141.8063
- Regularize: 2265.8794
- Ranking Simple: 0.5124
- Ranking Idealized: 0.5093
- Ranking Idealized Expo: 0.5093
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 12
- total_train_batch_size: 288
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo |
---|---|---|---|---|---|---|---|---|---|---|---|
737.2396 | 0.2834 | 50 | 421.9188 | -92.0238 | -1.3125 | 428.8152 | 221.7374 | 428.8152 | 0.5093 | 0.5093 | 0.5093 |
1559.0492 | 0.5668 | 100 | 1500.8584 | -82.7953 | -1.0226 | 1492.8041 | 733.0991 | 1492.8041 | 0.5072 | 0.5093 | 0.5093 |
1544.2886 | 0.8503 | 150 | 1796.8794 | -83.3935 | -0.8486 | 1837.2159 | 936.6276 | 1837.2159 | 0.4990 | 0.5093 | 0.5093 |
1387.1779 | 1.1337 | 200 | 1946.6445 | -81.0039 | -0.8010 | 1988.5870 | 1018.1060 | 1988.5870 | 0.5010 | 0.5093 | 0.5093 |
1257.5858 | 1.4171 | 250 | 2056.7834 | -79.5628 | -0.8937 | 2078.7400 | 1059.1973 | 2078.7400 | 0.5031 | 0.5093 | 0.5093 |
1062.9078 | 1.7005 | 300 | 2170.6946 | -79.7273 | -0.7209 | 2202.7805 | 1115.7678 | 2202.7805 | 0.5031 | 0.5093 | 0.5093 |
1015.0369 | 1.9839 | 350 | 2227.1714 | -83.5951 | -0.6739 | 2262.3740 | 1156.4828 | 2262.3740 | 0.5124 | 0.5093 | 0.5093 |
849.8354 | 2.2674 | 400 | 2210.6672 | -83.3996 | -0.6954 | 2238.0188 | 1124.7909 | 2238.0188 | 0.5155 | 0.5093 | 0.5093 |
749.1392 | 2.5508 | 450 | 2232.3298 | -80.8498 | -0.6204 | 2283.4070 | 1157.1035 | 2283.4070 | 0.5134 | 0.5093 | 0.5093 |
663.6063 | 2.8342 | 500 | 2235.3254 | -81.1036 | -0.6463 | 2277.7737 | 1152.4823 | 2277.7737 | 0.5083 | 0.5093 | 0.5093 |
547.2687 | 3.1176 | 550 | 2247.6917 | -81.3519 | -0.6623 | 2265.5049 | 1133.8970 | 2265.5049 | 0.5145 | 0.5093 | 0.5093 |
451.9043 | 3.4010 | 600 | 2235.0491 | -81.8093 | -0.6081 | 2263.8958 | 1143.4464 | 2263.8958 | 0.5114 | 0.5093 | 0.5093 |
383.0005 | 3.6845 | 650 | 2233.3066 | -81.6021 | -0.6417 | 2277.5994 | 1148.9692 | 2277.5994 | 0.5124 | 0.5093 | 0.5093 |
316.0834 | 3.9679 | 700 | 2236.5557 | -82.0739 | -0.6441 | 2269.0681 | 1143.5380 | 2269.0681 | 0.5134 | 0.5093 | 0.5093 |
230.1662 | 4.2513 | 750 | 2241.1863 | -82.1894 | -0.6514 | 2272.5417 | 1146.1786 | 2272.5417 | 0.5124 | 0.5093 | 0.5093 |
198.8015 | 4.5347 | 800 | 2236.1729 | -82.0761 | -0.6625 | 2266.9819 | 1141.6486 | 2266.9819 | 0.5134 | 0.5093 | 0.5093 |
189.8097 | 4.8181 | 850 | 2234.3398 | -82.0995 | -0.6599 | 2266.1760 | 1141.9380 | 2266.1760 | 0.5124 | 0.5093 | 0.5093 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1