hZzy's picture
End of training
952fdc2 verified
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise
model-index:
  - name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.5-1e6
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.5-1e6

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7095
  • Logps: -87.7114
  • Logits: -1.2689
  • Objective: 0.7117
  • Dpo Loss: 0.7514
  • Regularize: 0.7117
  • Ranking Simple: 0.5124
  • Ranking Idealized: 0.5248
  • Ranking Idealized Expo: 0.5093

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo
0.3563 0.2834 50 0.4211 -92.3339 -1.4209 0.4280 0.6873 0.4280 0.5114 0.5248 0.5093
0.4749 0.5668 100 0.4673 -91.3111 -1.3982 0.4712 0.6958 0.4712 0.5145 0.5248 0.5093
0.5468 0.8503 150 0.5596 -91.0759 -1.3204 0.5683 0.7061 0.5683 0.5145 0.5248 0.5093
0.5501 1.1337 200 0.6048 -89.7055 -1.3004 0.5995 0.7155 0.5995 0.5062 0.5248 0.5093
0.5045 1.4171 250 0.6191 -88.7256 -1.3194 0.6397 0.7337 0.6397 0.5176 0.5248 0.5093
0.5191 1.7005 300 0.6502 -87.6189 -1.3167 0.6544 0.7342 0.6544 0.5165 0.5248 0.5093
0.4473 1.9839 350 0.6869 -88.6205 -1.3002 0.6878 0.7476 0.6878 0.5093 0.5248 0.5093
0.3926 2.2674 400 0.7087 -87.7933 -1.2740 0.7147 0.7519 0.7147 0.5114 0.5248 0.5093
0.3583 2.5508 450 0.6997 -87.7180 -1.2638 0.7073 0.7468 0.7073 0.5093 0.5248 0.5093
0.2969 2.8342 500 0.7206 -87.5993 -1.2820 0.7300 0.7570 0.7300 0.5134 0.5248 0.5093
0.2456 3.1176 550 0.7082 -87.4857 -1.2747 0.7095 0.7502 0.7095 0.5134 0.5248 0.5093
0.2121 3.4010 600 0.7150 -87.8251 -1.2611 0.7195 0.7513 0.7195 0.5124 0.5248 0.5093
0.1721 3.6845 650 0.7181 -87.5542 -1.2667 0.7210 0.7529 0.7210 0.5124 0.5248 0.5093
0.1386 3.9679 700 0.7065 -87.5438 -1.2654 0.7094 0.7514 0.7094 0.5114 0.5248 0.5093
0.0985 4.2513 750 0.7096 -87.6431 -1.2699 0.7118 0.7509 0.7118 0.5145 0.5248 0.5093
0.0882 4.5347 800 0.7119 -87.7428 -1.2693 0.7145 0.7520 0.7145 0.5114 0.5248 0.5093
0.0796 4.8181 850 0.7095 -87.7155 -1.2689 0.7118 0.7515 0.7118 0.5124 0.5248 0.5093

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1