metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise
model-index:
- name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.5-1e6
results: []
qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.5-1e6
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:
- Loss: 0.7095
- Logps: -87.7114
- Logits: -1.2689
- Objective: 0.7117
- Dpo Loss: 0.7514
- Regularize: 0.7117
- Ranking Simple: 0.5124
- Ranking Idealized: 0.5248
- Ranking Idealized Expo: 0.5093
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 12
- total_train_batch_size: 288
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo |
---|---|---|---|---|---|---|---|---|---|---|---|
0.3563 | 0.2834 | 50 | 0.4211 | -92.3339 | -1.4209 | 0.4280 | 0.6873 | 0.4280 | 0.5114 | 0.5248 | 0.5093 |
0.4749 | 0.5668 | 100 | 0.4673 | -91.3111 | -1.3982 | 0.4712 | 0.6958 | 0.4712 | 0.5145 | 0.5248 | 0.5093 |
0.5468 | 0.8503 | 150 | 0.5596 | -91.0759 | -1.3204 | 0.5683 | 0.7061 | 0.5683 | 0.5145 | 0.5248 | 0.5093 |
0.5501 | 1.1337 | 200 | 0.6048 | -89.7055 | -1.3004 | 0.5995 | 0.7155 | 0.5995 | 0.5062 | 0.5248 | 0.5093 |
0.5045 | 1.4171 | 250 | 0.6191 | -88.7256 | -1.3194 | 0.6397 | 0.7337 | 0.6397 | 0.5176 | 0.5248 | 0.5093 |
0.5191 | 1.7005 | 300 | 0.6502 | -87.6189 | -1.3167 | 0.6544 | 0.7342 | 0.6544 | 0.5165 | 0.5248 | 0.5093 |
0.4473 | 1.9839 | 350 | 0.6869 | -88.6205 | -1.3002 | 0.6878 | 0.7476 | 0.6878 | 0.5093 | 0.5248 | 0.5093 |
0.3926 | 2.2674 | 400 | 0.7087 | -87.7933 | -1.2740 | 0.7147 | 0.7519 | 0.7147 | 0.5114 | 0.5248 | 0.5093 |
0.3583 | 2.5508 | 450 | 0.6997 | -87.7180 | -1.2638 | 0.7073 | 0.7468 | 0.7073 | 0.5093 | 0.5248 | 0.5093 |
0.2969 | 2.8342 | 500 | 0.7206 | -87.5993 | -1.2820 | 0.7300 | 0.7570 | 0.7300 | 0.5134 | 0.5248 | 0.5093 |
0.2456 | 3.1176 | 550 | 0.7082 | -87.4857 | -1.2747 | 0.7095 | 0.7502 | 0.7095 | 0.5134 | 0.5248 | 0.5093 |
0.2121 | 3.4010 | 600 | 0.7150 | -87.8251 | -1.2611 | 0.7195 | 0.7513 | 0.7195 | 0.5124 | 0.5248 | 0.5093 |
0.1721 | 3.6845 | 650 | 0.7181 | -87.5542 | -1.2667 | 0.7210 | 0.7529 | 0.7210 | 0.5124 | 0.5248 | 0.5093 |
0.1386 | 3.9679 | 700 | 0.7065 | -87.5438 | -1.2654 | 0.7094 | 0.7514 | 0.7094 | 0.5114 | 0.5248 | 0.5093 |
0.0985 | 4.2513 | 750 | 0.7096 | -87.6431 | -1.2699 | 0.7118 | 0.7509 | 0.7118 | 0.5145 | 0.5248 | 0.5093 |
0.0882 | 4.5347 | 800 | 0.7119 | -87.7428 | -1.2693 | 0.7145 | 0.7520 | 0.7145 | 0.5114 | 0.5248 | 0.5093 |
0.0796 | 4.8181 | 850 | 0.7095 | -87.7155 | -1.2689 | 0.7118 | 0.7515 | 0.7118 | 0.5124 | 0.5248 | 0.5093 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1