metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise
model-index:
- name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.05-1e6
results: []
qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.05-1e6
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:
- Loss: 0.4083
- Logps: -95.9768
- Logits: -1.6921
- Objective: 0.4121
- Dpo Loss: 0.6843
- Regularize: 0.4121
- Ranking Simple: 0.5207
- Ranking Idealized: 0.6570
- Ranking Idealized Expo: 0.5114
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 12
- total_train_batch_size: 288
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo |
---|---|---|---|---|---|---|---|---|---|---|---|
0.4009 | 0.2834 | 50 | 0.4077 | -90.3481 | -1.5066 | 0.4091 | 0.6906 | 0.4091 | 0.5145 | 0.6570 | 0.5114 |
0.3456 | 0.5668 | 100 | 0.4037 | -92.6246 | -1.6104 | 0.4081 | 0.6867 | 0.4081 | 0.5207 | 0.6570 | 0.5114 |
0.2786 | 0.8503 | 150 | 0.4061 | -94.6236 | -1.6473 | 0.4131 | 0.6873 | 0.4131 | 0.5207 | 0.6570 | 0.5114 |
0.2075 | 1.1337 | 200 | 0.4085 | -95.7674 | -1.6490 | 0.4120 | 0.6856 | 0.4120 | 0.5176 | 0.6570 | 0.5114 |
0.1852 | 1.4171 | 250 | 0.4045 | -95.1014 | -1.6977 | 0.4080 | 0.6845 | 0.4080 | 0.5227 | 0.6570 | 0.5114 |
0.172 | 1.7005 | 300 | 0.4055 | -95.9442 | -1.6403 | 0.4098 | 0.6843 | 0.4098 | 0.5227 | 0.6570 | 0.5114 |
0.1504 | 1.9839 | 350 | 0.4066 | -96.3838 | -1.6735 | 0.4094 | 0.6840 | 0.4094 | 0.5196 | 0.6570 | 0.5114 |
0.1241 | 2.2674 | 400 | 0.4076 | -95.9834 | -1.6893 | 0.4112 | 0.6844 | 0.4112 | 0.5238 | 0.6570 | 0.5114 |
0.1083 | 2.5508 | 450 | 0.4061 | -96.4275 | -1.6814 | 0.4094 | 0.6838 | 0.4094 | 0.5196 | 0.6570 | 0.5114 |
0.0989 | 2.8342 | 500 | 0.4076 | -95.7645 | -1.6797 | 0.4115 | 0.6844 | 0.4115 | 0.5176 | 0.6570 | 0.5114 |
0.0857 | 3.1176 | 550 | 0.4070 | -96.7057 | -1.6864 | 0.4108 | 0.6841 | 0.4108 | 0.5196 | 0.6570 | 0.5114 |
0.0723 | 3.4010 | 600 | 0.4083 | -96.7714 | -1.6934 | 0.4112 | 0.6840 | 0.4112 | 0.5227 | 0.6570 | 0.5114 |
0.0603 | 3.6845 | 650 | 0.4085 | -95.6858 | -1.6889 | 0.4126 | 0.6846 | 0.4126 | 0.5207 | 0.6570 | 0.5114 |
0.0658 | 3.9679 | 700 | 0.4086 | -95.9264 | -1.6962 | 0.4119 | 0.6843 | 0.4119 | 0.5217 | 0.6570 | 0.5114 |
0.0521 | 4.2513 | 750 | 0.4083 | -95.9188 | -1.6900 | 0.4119 | 0.6843 | 0.4119 | 0.5227 | 0.6570 | 0.5114 |
0.0529 | 4.5347 | 800 | 0.4081 | -95.8100 | -1.6918 | 0.4119 | 0.6843 | 0.4119 | 0.5207 | 0.6570 | 0.5114 |
0.0471 | 4.8181 | 850 | 0.4083 | -95.9782 | -1.6920 | 0.4121 | 0.6844 | 0.4121 | 0.5196 | 0.6570 | 0.5114 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1