hZzy's picture
End of training
24fa228 verified
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise
model-index:
  - name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.05-1e6
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.05-1e6

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4083
  • Logps: -95.9768
  • Logits: -1.6921
  • Objective: 0.4121
  • Dpo Loss: 0.6843
  • Regularize: 0.4121
  • Ranking Simple: 0.5207
  • Ranking Idealized: 0.6570
  • Ranking Idealized Expo: 0.5114

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo
0.4009 0.2834 50 0.4077 -90.3481 -1.5066 0.4091 0.6906 0.4091 0.5145 0.6570 0.5114
0.3456 0.5668 100 0.4037 -92.6246 -1.6104 0.4081 0.6867 0.4081 0.5207 0.6570 0.5114
0.2786 0.8503 150 0.4061 -94.6236 -1.6473 0.4131 0.6873 0.4131 0.5207 0.6570 0.5114
0.2075 1.1337 200 0.4085 -95.7674 -1.6490 0.4120 0.6856 0.4120 0.5176 0.6570 0.5114
0.1852 1.4171 250 0.4045 -95.1014 -1.6977 0.4080 0.6845 0.4080 0.5227 0.6570 0.5114
0.172 1.7005 300 0.4055 -95.9442 -1.6403 0.4098 0.6843 0.4098 0.5227 0.6570 0.5114
0.1504 1.9839 350 0.4066 -96.3838 -1.6735 0.4094 0.6840 0.4094 0.5196 0.6570 0.5114
0.1241 2.2674 400 0.4076 -95.9834 -1.6893 0.4112 0.6844 0.4112 0.5238 0.6570 0.5114
0.1083 2.5508 450 0.4061 -96.4275 -1.6814 0.4094 0.6838 0.4094 0.5196 0.6570 0.5114
0.0989 2.8342 500 0.4076 -95.7645 -1.6797 0.4115 0.6844 0.4115 0.5176 0.6570 0.5114
0.0857 3.1176 550 0.4070 -96.7057 -1.6864 0.4108 0.6841 0.4108 0.5196 0.6570 0.5114
0.0723 3.4010 600 0.4083 -96.7714 -1.6934 0.4112 0.6840 0.4112 0.5227 0.6570 0.5114
0.0603 3.6845 650 0.4085 -95.6858 -1.6889 0.4126 0.6846 0.4126 0.5207 0.6570 0.5114
0.0658 3.9679 700 0.4086 -95.9264 -1.6962 0.4119 0.6843 0.4119 0.5217 0.6570 0.5114
0.0521 4.2513 750 0.4083 -95.9188 -1.6900 0.4119 0.6843 0.4119 0.5227 0.6570 0.5114
0.0529 4.5347 800 0.4081 -95.8100 -1.6918 0.4119 0.6843 0.4119 0.5207 0.6570 0.5114
0.0471 4.8181 850 0.4083 -95.9782 -1.6920 0.4121 0.6844 0.4121 0.5196 0.6570 0.5114

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1