metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise
model-index:
- name: qwen2.5-0.5b-expo-L2EXPO-ES-100
results: []
qwen2.5-0.5b-expo-L2EXPO-ES-100
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:
- Loss: 486.1626
- Logps: -82.8268
- Logits: -0.5435
- Objective: 489.7928
- Dpo Loss: 245.8756
- Regularize: 489.7928
- Ranking Simple: 0.5254
- Ranking Idealized: 0.5212
- Ranking Idealized Expo: 0.5212
- Wo Beta: 14.0464
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Dpo Loss | Logits | Logps | Validation Loss | Objective | Ranking Idealized | Ranking Idealized Expo | Ranking Simple | Regularize | Wo Beta |
---|---|---|---|---|---|---|---|---|---|---|---|---|
43.2587 | 0.1417 | 50 | 26.4475 | -1.4448 | -90.5292 | 52.6622 | 53.6977 | 0.5212 | 0.5212 | 0.5264 | 53.6977 | 16.1700 |
169.8852 | 0.2834 | 100 | 85.7639 | -1.3621 | -85.2787 | 173.9861 | 172.1891 | 0.5212 | 0.5212 | 0.5243 | 172.1891 | 15.4391 |
285.0432 | 0.4251 | 150 | 143.0300 | -1.1694 | -83.2181 | 291.4834 | 293.4404 | 0.5212 | 0.5212 | 0.5280 | 293.4404 | 15.2225 |
355.4066 | 0.5668 | 200 | 189.8469 | -0.9274 | -84.0320 | 372.7906 | 365.2124 | 0.5212 | 0.5212 | 0.5233 | 365.2124 | 14.8684 |
368.9811 | 0.7085 | 250 | 216.4584 | -0.7746 | -81.5050 | 446.6966 | 442.3321 | 0.5212 | 0.5212 | 0.5259 | 442.3321 | 14.4790 |
360.5868 | 0.8503 | 300 | 222.8840 | -0.5984 | -82.2011 | 448.9506 | 443.9051 | 0.5212 | 0.5212 | 0.5248 | 443.9051 | 14.3930 |
338.3987 | 0.9920 | 350 | 232.9365 | -0.7855 | -84.1638 | 462.1923 | 461.2073 | 0.5212 | 0.5212 | 0.5269 | 461.2073 | 14.2979 |
309.1712 | 1.1337 | 400 | 248.0718 | -0.6414 | -82.4934 | 480.5965 | 478.7404 | 0.5212 | 0.5212 | 0.5254 | 478.7404 | 14.3872 |
298.1424 | 1.2754 | 450 | 247.8722 | -0.7014 | -82.1465 | 480.3256 | 482.1766 | 0.5212 | 0.5212 | 0.5238 | 482.1766 | 14.3695 |
282.4504 | 1.4171 | 500 | 252.2093 | -0.4578 | -83.4101 | 493.7484 | 495.7639 | 0.5212 | 0.5212 | 0.5248 | 495.7639 | 14.1743 |
261.1027 | 1.5588 | 550 | 245.8756 | -0.5435 | -82.8268 | 486.1626 | 489.7928 | 0.5212 | 0.5212 | 0.5254 | 489.7928 | 14.0464 |
255.9288 | 1.7005 | 600 | 251.2934 | -0.5347 | -82.1768 | 500.3801 | 502.1727 | 0.5212 | 0.5212 | 0.5269 | 502.1727 | 14.2436 |
248.6787 | 1.8422 | 650 | 254.5959 | -0.5140 | -81.4923 | 502.3153 | 504.1582 | 0.5212 | 0.5212 | 0.5248 | 504.1582 | 14.3320 |
226.4676 | 1.9839 | 700 | 264.1660 | -0.4816 | -83.4216 | 512.6990 | 516.7103 | 0.5212 | 0.5212 | 0.5254 | 516.7103 | 14.0834 |
207.1551 | 2.1256 | 750 | 259.2528 | -0.5410 | -83.4589 | 506.4237 | 510.6129 | 0.5212 | 0.5212 | 0.5238 | 510.6129 | 14.1295 |
197.3545 | 2.2674 | 800 | 262.3102 | -0.5659 | -84.8747 | 513.3979 | 514.3120 | 0.5212 | 0.5212 | 0.5228 | 514.3120 | 14.0704 |
182.3796 | 2.4138 | 850 | 501.8831 | -82.8624 | -0.5510 | 504.8523 | 254.1251 | 504.8523 | 0.5274 | 0.5212 | 0.5212 | 14.1707 |
176.042 | 2.5555 | 900 | 518.1983 | -85.0710 | -0.5039 | 519.5008 | 263.2800 | 519.5008 | 0.5238 | 0.5212 | 0.5212 | 14.1123 |
164.8281 | 2.6972 | 950 | 512.1844 | -84.5843 | -0.5200 | 512.7651 | 262.8074 | 512.7651 | 0.5238 | 0.5212 | 0.5212 | 14.1643 |
150.0401 | 2.8389 | 1000 | 514.7036 | -83.7343 | -0.5219 | 516.5959 | 263.6169 | 516.5959 | 0.5259 | 0.5212 | 0.5212 | 14.1800 |
141.0317 | 2.9806 | 1050 | 519.2467 | -84.2676 | -0.4953 | 521.8153 | 266.9453 | 521.8153 | 0.5264 | 0.5212 | 0.5212 | 14.2577 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1