hZzy's picture
Model save
e0d3a9c verified
|
raw
history blame
3.27 kB
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - trl
  - expo
  - generated_from_trainer
model-index:
  - name: qwen2.5-0.5b-expo-L2EXPO-ES-0.01
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-ES-0.01

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3975
  • Logps: -123.3866
  • Logits: -2.2621
  • Objective: 0.3953
  • Dpo Loss: 0.6769
  • Regularize: 0.3953
  • Ranking Simple: 0.5740
  • Ranking Idealized: 0.8732
  • Ranking Idealized Expo: 0.5321
  • Wo Beta: 23.6726

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 144
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo Wo Beta
0.4144 0.1417 50 0.4116 -92.3444 -1.6667 0.4097 0.6906 0.4097 0.5290 0.8732 0.5321 17.6306
0.394 0.2834 100 0.4078 -115.8757 -2.0312 0.4074 0.6863 0.4074 0.5399 0.8732 0.5321 22.1058
0.3504 0.4251 150 0.4044 -123.1670 -2.0505 0.4018 0.6803 0.4018 0.5719 0.8732 0.5321 23.5660
0.3135 0.5668 200 0.4006 -121.6031 -2.1409 0.3974 0.6781 0.3974 0.5621 0.8732 0.5321 23.0977
0.2807 0.7085 250 0.4043 -122.1639 -2.3711 0.4010 0.6790 0.4010 0.5600 0.8732 0.5321 23.6688
0.2532 0.8503 300 0.3975 -123.3866 -2.2621 0.3953 0.6769 0.3953 0.5740 0.8732 0.5321 23.6726

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1