hZzy's picture
End of training
eadb63f verified
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-25-1
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise_strong_new
model-index:
  - name: qwen2.5-0.5b-expo-L2EXPO-25-3
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-25-3

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-25-1 on the hZzy/train_pairwise_strong_new dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4184
  • Objective: 0.4334
  • Ranking Simple: 0.4905
  • Reward Accuracy: 0.6291
  • Logp Accuracy: 0.4905
  • Log Diff Policy: 0.6270
  • Chosen Logps: -93.7722
  • Rejected Logps: -94.3992
  • Chosen Rewards: 0.1566
  • Rejected Rewards: 0.0880
  • Logits: -1.2008

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Objective Ranking Simple Reward Accuracy Logp Accuracy Log Diff Policy Chosen Logps Rejected Logps Chosen Rewards Rejected Rewards Logits
0.3806 0.3212 50 0.4419 0.4517 0.4864 0.6264 0.4864 0.3852 -96.1308 -96.5160 -0.0793 -0.1237 -1.2623
0.3564 0.6424 100 0.4331 0.4486 0.4932 0.6114 0.4932 0.5639 -96.4497 -97.0136 -0.1111 -0.1734 -1.2708
0.3184 0.9636 150 0.4229 0.4380 0.4973 0.6236 0.4973 0.6348 -93.3135 -93.9483 0.2025 0.1331 -1.2473
0.2504 1.2848 200 0.4181 0.4328 0.4918 0.6454 0.4918 0.6747 -93.7666 -94.4414 0.1572 0.0838 -1.2087
0.2565 1.6060 250 0.4203 0.4386 0.4946 0.6277 0.4946 0.6352 -92.0965 -92.7317 0.3242 0.2548 -1.2579
0.2468 1.9272 300 0.4177 0.4317 0.4918 0.625 0.4918 0.6116 -93.9391 -94.5507 0.1399 0.0729 -1.2024
0.1956 2.2484 350 0.4182 0.4315 0.4918 0.6304 0.4918 0.6462 -93.9020 -94.5482 0.1436 0.0731 -1.2089
0.1909 2.5696 400 0.4186 0.4326 0.4918 0.6359 0.4918 0.6469 -93.7824 -94.4293 0.1556 0.0850 -1.1996
0.1873 2.8908 450 0.4185 0.4335 0.4918 0.6264 0.4918 0.6265 -93.7758 -94.4023 0.1562 0.0877 -1.2008

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1