Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-25-2

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-25-1 on the hZzy/train_pairwise_all_new dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3732
  • Objective: 0.3661
  • Ranking Simple: 0.5272
  • Reward Accuracy: 0.6184
  • Logp Accuracy: 0.5272
  • Log Diff Policy: 1.4964
  • Chosen Logps: -93.9669
  • Rejected Logps: -95.4632
  • Chosen Rewards: 0.0189
  • Rejected Rewards: -0.0484
  • Logits: -1.0973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Objective Ranking Simple Reward Accuracy Logp Accuracy Log Diff Policy Chosen Logps Rejected Logps Chosen Rewards Rejected Rewards Logits
0.3775 0.1413 50 0.3834 0.3808 0.5163 0.5785 0.5163 1.0022 -94.6418 -95.6439 -0.0486 -0.0664 -1.1440
0.3567 0.2826 100 0.3814 0.3756 0.5193 0.6141 0.5193 1.2191 -95.2743 -96.4934 -0.1119 -0.1514 -1.1248
0.3556 0.4238 150 0.3829 0.3778 0.5187 0.6008 0.5187 1.3120 -97.2010 -98.5130 -0.3045 -0.3534 -1.1497
0.3116 0.5651 200 0.3788 0.3741 0.5236 0.6178 0.5236 1.3794 -95.2373 -96.6166 -0.1082 -0.1637 -1.1020
0.3111 0.7064 250 0.3802 0.3731 0.5217 0.6081 0.5217 1.3607 -95.5764 -96.9371 -0.1421 -0.1958 -1.1156
0.2888 0.8477 300 0.3775 0.3719 0.5254 0.6178 0.5254 1.4271 -95.7193 -97.1464 -0.1564 -0.2167 -1.0972
0.2742 0.9889 350 0.3778 0.3731 0.5278 0.6310 0.5278 1.4149 -92.7176 -94.1325 0.1438 0.0847 -1.1577
0.2295 1.1302 400 0.3764 0.3696 0.5272 0.6171 0.5272 1.5014 -94.6456 -96.1470 -0.0490 -0.1168 -1.1084
0.2234 1.2715 450 0.3742 0.3703 0.5248 0.6069 0.5248 1.4271 -93.7809 -95.2079 0.0375 -0.0228 -1.1391
0.2144 1.4128 500 0.3741 0.3682 0.5248 0.6220 0.5248 1.4393 -93.1956 -94.6349 0.0960 0.0345 -1.0827
0.2186 1.5540 550 0.3751 0.3683 0.5260 0.6220 0.5260 1.4528 -92.7123 -94.1651 0.1443 0.0814 -1.1178
0.205 1.6953 600 0.3762 0.3692 0.5266 0.6232 0.5266 1.4922 -93.6128 -95.1051 0.0543 -0.0126 -1.1120
0.1908 1.8366 650 0.3754 0.3680 0.5223 0.6159 0.5223 1.4726 -93.8479 -95.3205 0.0308 -0.0341 -1.1085
0.1851 1.9779 700 0.3740 0.3671 0.5242 0.6220 0.5242 1.4626 -94.0915 -95.5541 0.0064 -0.0575 -1.0983
0.1453 2.1191 750 0.3738 0.3702 0.5242 0.6178 0.5242 1.4582 -92.8502 -94.3084 0.1305 0.0671 -1.0918
0.149 2.2604 800 0.3734 0.3662 0.5290 0.625 0.5290 1.5033 -94.1187 -95.6221 0.0037 -0.0643 -1.0989
0.1548 2.4017 850 0.3725 0.3662 0.5236 0.6184 0.5236 1.4822 -94.0088 -95.4911 0.0147 -0.0512 -1.0865
0.1333 2.5430 900 0.3721 0.3650 0.5260 0.6202 0.5260 1.4965 -94.1236 -95.6201 0.0032 -0.0641 -1.1158
0.1414 2.6842 950 0.3729 0.3671 0.5266 0.6214 0.5266 1.4965 -94.4185 -95.9149 -0.0263 -0.0935 -1.0838
0.1371 2.8255 1000 0.3739 0.3688 0.5248 0.6147 0.5248 1.4881 -93.8768 -95.3649 0.0279 -0.0385 -1.0965
0.1193 2.9668 1050 0.3736 0.3660 0.5266 0.6153 0.5266 1.4860 -93.4251 -94.9111 0.0730 0.0068 -1.0944
0.1002 3.1081 1100 0.3729 0.3656 0.5260 0.6178 0.5260 1.4959 -93.4099 -94.9058 0.0746 0.0074 -1.0990
0.1031 3.2494 1150 0.3733 0.3665 0.5266 0.6208 0.5266 1.4998 -94.1445 -95.6443 0.0011 -0.0665 -1.0853
0.095 3.3906 1200 0.3732 0.3659 0.5260 0.6208 0.5260 1.4867 -93.9840 -95.4707 0.0172 -0.0491 -1.0953
0.1014 3.5319 1250 0.3734 0.3665 0.5272 0.6226 0.5272 1.4976 -94.1020 -95.5996 0.0054 -0.0620 -1.0973
0.0949 3.6732 1300 0.3734 0.3664 0.5272 0.6178 0.5272 1.4947 -93.9755 -95.4702 0.0180 -0.0491 -1.0977
0.096 3.8145 1350 0.3733 0.3661 0.5272 0.6190 0.5272 1.4969 -93.9574 -95.4542 0.0198 -0.0475 -1.0971
0.1032 3.9557 1400 0.3732 0.3661 0.5272 0.6184 0.5272 1.4964 -93.9669 -95.4632 0.0189 -0.0484 -1.0973

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for hZzy/qwen2.5-0.5b-expo-L2EXPO-25-2

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(6)
this model

Dataset used to train hZzy/qwen2.5-0.5b-expo-L2EXPO-25-2