hZzy's picture
End of training
fc5a32d verified
---
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise_weighted
model-index:
- name: qwen2.5-0.5b-expo-L1EXPO-noES-0.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/uh50oig6)
# qwen2.5-0.5b-expo-L1EXPO-noES-0.1
This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise_weighted dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1381
- Logps: -85.9802
- Logits: -1.2306
- Objective: 0.1370
- Dpo Loss: 0.6974
- Regularize: 0.1370
- Ranking Simple: 0.5243
- Ranking Idealized: 0.6025
- Ranking Idealized Expo: 0.5233
- Wo Beta: 15.6347
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:|:-------:|
| 0.0351 | 0.1417 | 50 | 0.0221 | -91.2329 | -1.3917 | 0.0224 | 0.6927 | 0.0224 | 0.5212 | 0.6025 | 0.5233 | 16.2217 |
| 0.0877 | 0.2834 | 100 | 0.0433 | -88.6602 | -1.3863 | 0.0447 | 0.6922 | 0.0447 | 0.5238 | 0.6025 | 0.5233 | 16.1682 |
| 0.1323 | 0.4251 | 150 | 0.0768 | -90.4377 | -1.3054 | 0.0764 | 0.6956 | 0.0764 | 0.5223 | 0.6025 | 0.5233 | 16.0034 |
| 0.1427 | 0.5668 | 200 | 0.1032 | -88.3433 | -1.3124 | 0.1017 | 0.6959 | 0.1017 | 0.5223 | 0.6025 | 0.5233 | 15.9928 |
| 0.1451 | 0.7085 | 250 | 0.1178 | -88.0698 | -1.2854 | 0.1185 | 0.6950 | 0.1185 | 0.5274 | 0.6025 | 0.5233 | 15.7878 |
| 0.1305 | 0.8503 | 300 | 0.1247 | -86.3312 | -1.2863 | 0.1252 | 0.6961 | 0.1252 | 0.5280 | 0.6025 | 0.5233 | 15.7668 |
| 0.1407 | 0.9920 | 350 | 0.1314 | -86.4501 | -1.2757 | 0.1310 | 0.6976 | 0.1310 | 0.5223 | 0.6025 | 0.5233 | 15.6570 |
| 0.1245 | 1.1337 | 400 | 0.1399 | -86.2849 | -1.2418 | 0.1390 | 0.6980 | 0.1390 | 0.5259 | 0.6025 | 0.5233 | 15.6147 |
| 0.1163 | 1.2754 | 450 | 0.1421 | -85.4828 | -1.2307 | 0.1421 | 0.6985 | 0.1421 | 0.5274 | 0.6025 | 0.5233 | 15.6128 |
| 0.1071 | 1.4171 | 500 | 0.1382 | -87.2673 | -1.2270 | 0.1376 | 0.6980 | 0.1376 | 0.5285 | 0.6025 | 0.5233 | 15.6445 |
| 0.1045 | 1.5588 | 550 | 0.1428 | -87.0776 | -1.2327 | 0.1426 | 0.6977 | 0.1426 | 0.5254 | 0.6025 | 0.5233 | 15.5807 |
| 0.0866 | 1.7005 | 600 | 0.1424 | -85.1926 | -1.2196 | 0.1408 | 0.6965 | 0.1408 | 0.5269 | 0.6025 | 0.5233 | 15.6603 |
| 0.0847 | 1.8422 | 650 | 0.1380 | -86.1129 | -1.2229 | 0.1356 | 0.6974 | 0.1356 | 0.5243 | 0.6025 | 0.5233 | 15.6660 |
| 0.071 | 1.9839 | 700 | 0.1420 | -85.2496 | -1.2208 | 0.1405 | 0.6980 | 0.1405 | 0.5254 | 0.6025 | 0.5233 | 15.6109 |
| 0.0546 | 2.1256 | 750 | 0.1423 | -85.4691 | -1.2233 | 0.1407 | 0.6980 | 0.1407 | 0.5259 | 0.6025 | 0.5233 | 15.6480 |
| 0.0531 | 2.2674 | 800 | 0.1386 | -86.1368 | -1.2206 | 0.1371 | 0.6981 | 0.1371 | 0.5243 | 0.6025 | 0.5233 | 15.6234 |
| 0.0444 | 2.4091 | 850 | 0.1395 | -86.0362 | -1.2271 | 0.1382 | 0.6980 | 0.1382 | 0.5238 | 0.6025 | 0.5233 | 15.6472 |
| 0.0438 | 2.5508 | 900 | 0.1387 | -85.8840 | -1.2296 | 0.1374 | 0.6975 | 0.1374 | 0.5238 | 0.6025 | 0.5233 | 15.6345 |
| 0.0384 | 2.6925 | 950 | 0.1380 | -85.9590 | -1.2285 | 0.1368 | 0.6975 | 0.1368 | 0.5238 | 0.6025 | 0.5233 | 15.6425 |
| 0.0375 | 2.8342 | 1000 | 0.1380 | -85.9976 | -1.2305 | 0.1369 | 0.6974 | 0.1369 | 0.5243 | 0.6025 | 0.5233 | 15.6355 |
| 0.0397 | 2.9759 | 1050 | 0.1381 | -85.9802 | -1.2306 | 0.1370 | 0.6974 | 0.1370 | 0.5243 | 0.6025 | 0.5233 | 15.6347 |
### Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1