qwen2.5-0.5b-expo-L1EXPO-ES-0.1
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:
- Loss: 0.5234
- Logps: -82.5192
- Logits: -0.4757
- Objective: 0.5225
- Dpo Loss: 0.7512
- Regularize: 0.5225
- Ranking Simple: 0.5254
- Ranking Idealized: 0.6030
- Ranking Idealized Expo: 0.5223
- Wo Beta: 14.0055
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Dpo Loss | Logits | Logps | Validation Loss | Objective | Ranking Idealized | Ranking Idealized Expo | Ranking Simple | Regularize | Wo Beta |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0448 | 0.1417 | 50 | 0.6936 | -1.4299 | -90.3888 | 0.0622 | 0.0621 | 0.6030 | 0.5223 | 0.5243 | 0.0621 | 16.0768 |
0.1716 | 0.2834 | 100 | 0.6982 | -1.3597 | -88.7675 | 0.1556 | 0.1559 | 0.6030 | 0.5223 | 0.5274 | 0.1559 | 15.9436 |
0.2858 | 0.4251 | 150 | 0.7183 | -1.2546 | -79.5067 | 0.2912 | 0.2923 | 0.6030 | 0.5223 | 0.5228 | 0.2923 | 15.0570 |
0.3544 | 0.5668 | 200 | 0.7309 | -0.8432 | -83.8485 | 0.3898 | 0.3890 | 0.6030 | 0.5223 | 0.5228 | 0.3890 | 14.7122 |
0.375 | 0.7085 | 250 | 0.7353 | -0.6734 | -81.2900 | 0.4398 | 0.4375 | 0.6030 | 0.5223 | 0.5243 | 0.4375 | 14.4729 |
0.3592 | 0.8503 | 300 | 0.7348 | -0.5501 | -84.4144 | 0.4422 | 0.4388 | 0.6030 | 0.5223 | 0.5233 | 0.4388 | 14.4403 |
0.3351 | 0.9920 | 350 | 0.7354 | -0.5360 | -82.9375 | 0.4676 | 0.4602 | 0.6030 | 0.5223 | 0.5342 | 0.4602 | 14.2722 |
0.3056 | 1.1337 | 400 | 0.7470 | -0.5686 | -80.5606 | 0.4842 | 0.4804 | 0.6030 | 0.5223 | 0.5254 | 0.4804 | 14.2812 |
0.2932 | 1.2754 | 450 | 0.7439 | -0.5565 | -83.6231 | 0.4805 | 0.4755 | 0.6030 | 0.5223 | 0.5280 | 0.4755 | 14.4640 |
0.2864 | 1.4171 | 500 | 0.7510 | -0.6557 | -82.9178 | 0.4964 | 0.4971 | 0.6030 | 0.5223 | 0.5274 | 0.4971 | 14.2823 |
0.2635 | 1.5588 | 550 | 0.7503 | -0.6184 | -81.1614 | 0.5023 | 0.5043 | 0.6030 | 0.5223 | 0.5228 | 0.5043 | 14.0632 |
0.2561 | 1.7005 | 600 | 0.7487 | -0.5805 | -84.7039 | 0.4980 | 0.4964 | 0.6030 | 0.5223 | 0.5233 | 0.4964 | 14.3352 |
0.2448 | 1.8422 | 650 | 0.7503 | -0.4274 | -83.4629 | 0.5171 | 0.5191 | 0.6030 | 0.5223 | 0.5233 | 0.5191 | 14.2153 |
0.2235 | 1.9839 | 700 | 0.7483 | -0.5057 | -81.7196 | 0.4963 | 0.4949 | 0.6030 | 0.5223 | 0.5233 | 0.4949 | 14.2026 |
0.21 | 2.1256 | 750 | 0.7512 | -0.4757 | -82.5192 | 0.5234 | 0.5225 | 0.6030 | 0.5223 | 0.5254 | 0.5225 | 14.0055 |
0.1988 | 2.2674 | 800 | 0.7496 | -0.5578 | -81.0564 | 0.5140 | 0.5114 | 0.6030 | 0.5223 | 0.5295 | 0.5114 | 14.1030 |
0.1845 | 2.4091 | 850 | 0.7516 | -0.5129 | -82.6326 | 0.5205 | 0.5186 | 0.6030 | 0.5223 | 0.5311 | 0.5186 | 14.1518 |
0.1741 | 2.5508 | 900 | 0.7507 | -0.4790 | -82.9809 | 0.5132 | 0.5118 | 0.6030 | 0.5223 | 0.5238 | 0.5118 | 14.2459 |
0.1659 | 2.6925 | 950 | 0.7500 | -0.4840 | -83.8330 | 0.5189 | 0.5193 | 0.6030 | 0.5223 | 0.5238 | 0.5193 | 14.3029 |
0.1539 | 2.8342 | 1000 | 0.7499 | -0.4671 | -82.8831 | 0.5137 | 0.5127 | 0.6030 | 0.5223 | 0.5269 | 0.5127 | 14.1925 |
0.1445 | 2.9806 | 1050 | 0.5116 | -83.1677 | -0.5531 | 0.5112 | 0.7478 | 0.5112 | 0.5248 | 0.6030 | 0.5223 | 14.2141 |
0.1261 | 3.1223 | 1100 | 0.5157 | -83.5954 | -0.5488 | 0.5165 | 0.7515 | 0.5165 | 0.5233 | 0.6030 | 0.5223 | 14.1783 |
0.1146 | 3.2641 | 1150 | 0.5175 | -83.4265 | -0.5372 | 0.5161 | 0.7487 | 0.5161 | 0.5264 | 0.6030 | 0.5223 | 14.1956 |
0.1076 | 3.4058 | 1200 | 0.5169 | -83.9912 | -0.4946 | 0.5160 | 0.7492 | 0.5160 | 0.5274 | 0.6030 | 0.5223 | 14.1241 |
0.0981 | 3.5475 | 1250 | 0.5175 | -83.3791 | -0.5087 | 0.5185 | 0.7500 | 0.5185 | 0.5311 | 0.6030 | 0.5223 | 14.2158 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for hZzy/qwen2.5-0.5b-expo-L1EXPO-ES-0.1
Base model
hZzy/qwen2.5-0.5b-sft-news-IFT