Visualize in Weights & Biases

qwen2.5-0.5b-expo-DPO-W0-noES5-1

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise_weighted dataset. It achieves the following results on the evaluation set:

  • Loss: 883.8085
  • Logps: -80.9858
  • Logits: -0.7331
  • Objective: 840.0047
  • Dpo Loss: 1.9391
  • Regularize: 1.9391
  • Ranking Simple: 0.5419
  • Wo Beta: 6.8860

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 144
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Wo Beta
421.2896 0.1417 50 429.8647 -92.0336 -1.3989 424.8991 0.9812 0.9812 0.5243 7.8078
504.7676 0.2834 100 586.4431 -92.6050 -1.2546 565.0956 1.2757 1.2757 0.5336 7.4997
647.489 0.4251 150 806.8841 -81.5770 -1.2821 788.4058 1.8202 1.8202 0.5367 7.2972
549.7892 0.5668 200 883.9946 -76.2048 -1.1825 832.8786 1.8889 1.8889 0.5316 7.1899
598.0575 0.7085 250 912.8014 -79.1561 -1.0494 878.0984 2.0106 2.0106 0.5316 7.1417
490.4698 0.8503 300 908.3519 -84.3491 -0.8243 883.9852 2.0489 2.0489 0.5373 6.9721
374.0952 0.9920 350 968.3278 -82.5209 -0.7335 906.4931 2.0826 2.0826 0.5342 6.9381
270.3782 1.1337 400 980.7469 -79.6276 -0.6857 943.6777 2.1842 2.1842 0.5316 7.0585
260.6353 1.2754 450 933.4417 -79.3049 -0.8704 893.1430 2.0753 2.0753 0.5357 6.9556
272.6055 1.4171 500 950.2914 -81.4393 -0.8079 901.2256 2.0878 2.0878 0.5269 6.8227
201.6789 1.5588 550 942.4045 -82.8839 -0.8612 899.7697 2.0626 2.0626 0.5362 6.8595
190.6931 1.7005 600 909.0859 -80.5821 -0.7143 874.9576 2.0213 2.0213 0.5362 6.8605
308.8635 1.8422 650 903.3456 -81.4960 -0.7771 858.3967 1.9757 1.9757 0.5342 6.7432
176.7641 1.9839 700 901.6802 -80.9281 -0.6642 855.0222 1.9719 1.9719 0.5399 6.8200
56.904 2.1256 750 887.2380 -81.6086 -0.7334 839.1237 1.9393 1.9393 0.5388 6.8787
63.8462 2.2674 800 877.9467 -81.2591 -0.7491 832.3641 1.9230 1.9230 0.5388 6.8255
60.559 2.4091 850 876.0621 -81.4314 -0.7166 834.9629 1.9304 1.9304 0.5393 6.8969
61.5447 2.5508 900 885.5046 -81.6223 -0.7120 842.5768 1.9455 1.9455 0.5414 6.9054
76.2992 2.6925 950 885.0244 -81.0106 -0.7336 840.8616 1.9409 1.9409 0.5414 6.8752
65.003 2.8342 1000 883.8387 -80.9709 -0.7340 839.7760 1.9386 1.9386 0.5419 6.8808
59.5302 2.9759 1050 883.8083 -80.9858 -0.7331 840.0045 1.9391 1.9391 0.5419 6.8860

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for hZzy/qwen2.5-0.5b-expo-DPO-W0-noES5-1

Finetuned
(74)
this model

Dataset used to train hZzy/qwen2.5-0.5b-expo-DPO-W0-noES5-1