hZzy's picture
Model save
f2b2deb verified
|
raw
history blame
3.33 kB
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - trl
  - expo
  - generated_from_trainer
model-index:
  - name: qwen2.5-0.5b-expo-DPO-EXPERIMENT
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-DPO-EXPERIMENT

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6818
  • Logps: -92.0550
  • Logits: -1.5636
  • Objective: 0.6891
  • Dpo Loss: 0.6891
  • Regularize: 0.6891
  • Ranking Simple: 0.5196
  • Ranking Idealized: 0.5888
  • Ranking Idealized Expo: 0.5103

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo
0.6855 0.2834 50 0.6889 -90.7669 -1.4343 0.6918 0.6918 0.6918 0.5103 0.5888 0.5103
0.6746 0.5668 100 0.6858 -90.9748 -1.4764 0.6899 0.6899 0.6899 0.5093 0.5888 0.5103
0.6601 0.8503 150 0.6828 -90.8063 -1.5179 0.6886 0.6886 0.6886 0.5134 0.5888 0.5103
0.6473 1.1337 200 0.6826 -91.9779 -1.5427 0.6890 0.6890 0.6890 0.5176 0.5888 0.5103
0.6449 1.4171 250 0.6813 -91.6044 -1.5537 0.6887 0.6887 0.6887 0.5176 0.5888 0.5103
0.6384 1.7005 300 0.6818 -92.0140 -1.5627 0.6890 0.6890 0.6890 0.5186 0.5888 0.5103
0.6431 1.9839 350 0.6818 -92.0550 -1.5636 0.6891 0.6891 0.6891 0.5196 0.5888 0.5103

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1