hZzy's picture
End of training
f4966a5 verified
|
raw
history blame
3.56 kB
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise
model-index:
  - name: qwen2.5-0.5b-expo-DPO-ES2-0.1
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-DPO-ES2-0.1

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6808
  • Logps: -90.9674
  • Logits: -1.6164
  • Objective: 0.6836
  • Dpo Loss: 0.6836
  • Regularize: 0.6836
  • Ranking Simple: 0.5331
  • Ranking Idealized: 0.6030
  • Ranking Idealized Expo: 0.5223
  • Wo Beta: 7.8643

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 144
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo Wo Beta
0.689 0.1417 50 0.6875 -90.0815 -1.4869 0.6892 0.6892 0.6892 0.5259 0.6030 0.5223 7.8857
0.6673 0.2834 100 0.6808 -90.9674 -1.6164 0.6836 0.6836 0.6836 0.5331 0.6030 0.5223 7.8643
0.6376 0.4251 150 0.6785 -94.6386 -1.6873 0.6833 0.6833 0.6833 0.5342 0.6030 0.5223 8.1745
0.5955 0.5668 200 0.6808 -100.2786 -1.8583 0.6818 0.6818 0.6818 0.5342 0.6030 0.5223 7.9037
0.5623 0.7085 250 0.6757 -97.3034 -1.9407 0.6757 0.6757 0.6757 0.5362 0.6030 0.5223 7.9161
0.5255 0.8503 300 0.7037 -102.4820 -2.0313 0.7119 0.7119 0.7119 0.5352 0.6030 0.5223 8.7956
0.4939 0.9920 350 0.6897 -102.1435 -1.9358 0.6916 0.6916 0.6916 0.5419 0.6030 0.5223 8.3961

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1