hZzy's picture
Model save
6a901b2 verified
|
raw
history blame
3.45 kB
---
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- trl
- expo
- generated_from_trainer
model-index:
- name: qwen2.5-0.5b-expo-DPO-ES2-0.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/vy4xlg1g)
# qwen2.5-0.5b-expo-DPO-ES2-0.1
This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6897
- Logps: -102.1435
- Logits: -1.9358
- Objective: 0.6916
- Dpo Loss: 0.6916
- Regularize: 0.6916
- Ranking Simple: 0.5419
- Ranking Idealized: 0.6030
- Ranking Idealized Expo: 0.5223
- Wo Beta: 8.3961
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:|:-------:|
| 0.689 | 0.1417 | 50 | 0.6875 | -90.0815 | -1.4869 | 0.6892 | 0.6892 | 0.6892 | 0.5259 | 0.6030 | 0.5223 | 7.8857 |
| 0.6673 | 0.2834 | 100 | 0.6808 | -90.9674 | -1.6164 | 0.6836 | 0.6836 | 0.6836 | 0.5331 | 0.6030 | 0.5223 | 7.8643 |
| 0.6376 | 0.4251 | 150 | 0.6785 | -94.6386 | -1.6873 | 0.6833 | 0.6833 | 0.6833 | 0.5342 | 0.6030 | 0.5223 | 8.1745 |
| 0.5955 | 0.5668 | 200 | 0.6808 | -100.2786 | -1.8583 | 0.6818 | 0.6818 | 0.6818 | 0.5342 | 0.6030 | 0.5223 | 7.9037 |
| 0.5623 | 0.7085 | 250 | 0.6757 | -97.3034 | -1.9407 | 0.6757 | 0.6757 | 0.6757 | 0.5362 | 0.6030 | 0.5223 | 7.9161 |
| 0.5255 | 0.8503 | 300 | 0.7037 | -102.4820 | -2.0313 | 0.7119 | 0.7119 | 0.7119 | 0.5352 | 0.6030 | 0.5223 | 8.7956 |
| 0.4939 | 0.9920 | 350 | 0.6897 | -102.1435 | -1.9358 | 0.6916 | 0.6916 | 0.6916 | 0.5419 | 0.6030 | 0.5223 | 8.3961 |
### Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1