hZzy's picture
End of training
63d5d66 verified
|
raw
history blame
4 kB
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - alignment-handbook
  - ndcg
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise
model-index:
  - name: qwen2.5-0.5b-expo-DPO-ES-TRY
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-DPO-ES-TRY

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6866
  • Logps: -91.4116
  • Logits: -1.5339
  • Objective: 0.6926
  • Dpo Loss: 0.6926
  • Regularize: 0.6926
  • Ranking Simple: 0.5052
  • Ranking Idealized: 0.5888
  • Ranking Idealized Expo: 0.5093
  • Dpo Wo Beta: -0.9551

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Dpo Loss Dpo Wo Beta Logits Logps Validation Loss Objective Ranking Idealized Ranking Idealized Expo Ranking Simple Regularize
0.672 0.2041 36 0.6926 -0.9551 -1.5339 -91.4116 0.6866 0.6926 0.5888 0.5093 0.5052 0.6926
0.6533 0.4081 72 0.6885 -1.1473 -1.6311 -92.4758 0.6769 0.6885 0.5888 0.5093 0.5176 0.6885
0.604 0.6122 108 0.6853 -1.3961 -1.7691 -94.0584 0.6773 0.6853 0.5888 0.5093 0.5186 0.6853
0.5911 0.8162 144 0.6886 -1.5153 -1.8165 -95.7578 0.6775 0.6886 0.5888 0.5093 0.5186 0.6886
0.5482 1.0203 180 0.6859 -98.1346 -1.8457 0.6998 0.6998 0.6998 0.5238 0.5888 0.5093 -1.8685
0.5171 1.2244 216 0.6891 -99.3936 -1.8859 0.7004 0.7004 0.7004 0.5248 0.5888 0.5093 -2.0594
0.5093 1.4284 252 0.6999 -102.0847 -1.8968 0.7119 0.7119 0.7119 0.5238 0.5888 0.5093 -2.3165
0.4986 1.6325 288 0.6981 -102.1441 -1.9005 0.7090 0.7090 0.7090 0.5279 0.5888 0.5093 -2.2741
0.5055 1.8366 324 0.6965 -101.5796 -1.8981 0.7080 0.7080 0.7080 0.5279 0.5888 0.5093 -2.2649

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1