metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- trl
- expo
- generated_from_trainer
model-index:
- name: qwen2.5-0.5b-expo-DPO-ES-10
results: []
qwen2.5-0.5b-expo-DPO-ES-10
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 21.3539
- Logps: -79.7115
- Logits: -0.5475
- Objective: 20.4532
- Dpo Loss: 20.4532
- Regularize: 20.4532
- Ranking Simple: 0.5362
- Ranking Idealized: 0.5212
- Ranking Idealized Expo: 0.5212
- Wo Beta: 6.6867
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2.0094 | 0.1417 | 50 | 3.1068 | -90.6242 | -1.4592 | 3.0980 | 3.0980 | 3.0980 | 0.5259 | 0.5212 | 0.5212 | 7.7179 |
5.9165 | 0.2834 | 100 | 7.1487 | -82.8335 | -1.4642 | 7.1399 | 7.1399 | 7.1399 | 0.5300 | 0.5212 | 0.5212 | 7.4498 |
9.9617 | 0.4251 | 150 | 11.8998 | -83.0745 | -1.3437 | 11.3536 | 11.3536 | 11.3536 | 0.5305 | 0.5212 | 0.5212 | 7.2609 |
12.4724 | 0.5668 | 200 | 17.0987 | -79.9360 | -1.3880 | 16.0617 | 16.0617 | 16.0617 | 0.5300 | 0.5212 | 0.5212 | 7.2290 |
13.2936 | 0.7085 | 250 | 18.5309 | -77.3150 | -1.3641 | 17.7971 | 17.7971 | 17.7971 | 0.5342 | 0.5212 | 0.5212 | 7.2078 |
11.5204 | 0.8503 | 300 | 19.4344 | -76.9798 | -0.9941 | 18.7017 | 18.7017 | 18.7017 | 0.5357 | 0.5212 | 0.5212 | 7.0136 |
11.3717 | 0.9920 | 350 | 20.3959 | -76.1623 | -1.0426 | 19.0398 | 19.0398 | 19.0398 | 0.5409 | 0.5212 | 0.5212 | 7.0261 |
7.0971 | 1.1337 | 400 | 21.9279 | -76.1458 | -0.6236 | 21.6902 | 21.6902 | 21.6902 | 0.5388 | 0.5212 | 0.5212 | 7.1227 |
7.5725 | 1.2754 | 450 | 20.9480 | -76.3924 | -0.8352 | 20.3853 | 20.3853 | 20.3853 | 0.5373 | 0.5212 | 0.5212 | 6.8500 |
7.6466 | 1.4171 | 500 | 20.9821 | -80.7806 | -0.7483 | 20.2651 | 20.2651 | 20.2651 | 0.5326 | 0.5212 | 0.5212 | 6.8824 |
6.9565 | 1.5588 | 550 | 21.3506 | -80.2051 | -0.6148 | 20.5661 | 20.5661 | 20.5661 | 0.5383 | 0.5212 | 0.5212 | 6.6513 |
6.7183 | 1.7005 | 600 | 21.1265 | -78.5344 | -0.6067 | 20.0027 | 20.0027 | 20.0027 | 0.5367 | 0.5212 | 0.5212 | 6.6768 |
6.9931 | 1.8422 | 650 | 22.2083 | -77.6509 | -0.5872 | 21.4455 | 21.4455 | 21.4455 | 0.5383 | 0.5212 | 0.5212 | 6.8190 |
6.1685 | 1.9839 | 700 | 22.3607 | -77.1493 | -0.5436 | 21.5512 | 21.5512 | 21.5512 | 0.5404 | 0.5212 | 0.5212 | 6.7299 |
3.4811 | 2.1256 | 750 | 21.8349 | -78.9312 | -0.7313 | 21.1379 | 21.1379 | 21.1379 | 0.5424 | 0.5212 | 0.5212 | 6.8213 |
3.3995 | 2.2674 | 800 | 21.3539 | -79.7115 | -0.5475 | 20.4532 | 20.4532 | 20.4532 | 0.5362 | 0.5212 | 0.5212 | 6.6867 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1