metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise_weighted
model-index:
- name: qwen2.5-0.5b-expo-DPO-ES-0.1
results: []
qwen2.5-0.5b-expo-DPO-ES-0.1
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise_weighted dataset. It achieves the following results on the evaluation set:
- Loss: 0.6921
- Logps: -91.0309
- Logits: -2.1203
- Objective: 0.6893
- Dpo Loss: 0.6893
- Regularize: 0.6893
- Ranking Simple: 0.5559
- Ranking Idealized: 0.6030
- Ranking Idealized Expo: 0.5223
- Wo Beta: 7.4262
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6785 | 0.1417 | 50 | 0.6813 | -90.8716 | -1.6022 | 0.6843 | 0.6843 | 0.6843 | 0.5259 | 0.6030 | 0.5223 | 7.8749 |
0.618 | 0.2834 | 100 | 0.6733 | -98.8899 | -1.7799 | 0.6766 | 0.6766 | 0.6766 | 0.5399 | 0.6030 | 0.5223 | 7.7840 |
0.5667 | 0.4251 | 150 | 0.6866 | -99.1230 | -1.8072 | 0.6829 | 0.6829 | 0.6829 | 0.5409 | 0.6030 | 0.5223 | 7.8533 |
0.5214 | 0.5668 | 200 | 0.6901 | -99.5388 | -1.8894 | 0.6904 | 0.6904 | 0.6904 | 0.5445 | 0.6030 | 0.5223 | 7.6995 |
0.4922 | 0.7085 | 250 | 0.6976 | -82.7973 | -1.9880 | 0.6916 | 0.6916 | 0.6916 | 0.5476 | 0.6030 | 0.5223 | 7.8790 |
0.4535 | 0.8503 | 300 | 0.6921 | -91.0309 | -2.1203 | 0.6893 | 0.6893 | 0.6893 | 0.5559 | 0.6030 | 0.5223 | 7.4262 |
0.423 | 0.9920 | 350 | 0.7057 | -88.1615 | -1.9880 | 0.6959 | 0.6959 | 0.6959 | 0.5549 | 0.6030 | 0.5223 | 7.9979 |
0.2847 | 1.1337 | 400 | 0.7315 | -101.6926 | -2.0862 | 0.7281 | 0.7281 | 0.7281 | 0.5424 | 0.6030 | 0.5223 | 8.6326 |
0.2991 | 1.2754 | 450 | 0.7008 | -92.7942 | -1.8470 | 0.6980 | 0.6980 | 0.6980 | 0.5621 | 0.6030 | 0.5223 | 8.2584 |
0.3065 | 1.4171 | 500 | 0.7180 | -96.6747 | -2.0065 | 0.7147 | 0.7147 | 0.7147 | 0.5554 | 0.6030 | 0.5223 | 8.2522 |
0.2895 | 1.5588 | 550 | 0.7044 | -104.2469 | -1.8870 | 0.7077 | 0.7077 | 0.7077 | 0.5652 | 0.6030 | 0.5223 | 8.1947 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1