hZzy's picture
End of training
ee26d68 verified
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise_weighted
model-index:
  - name: qwen2.5-0.5b-expo-DPO-ES-0.1
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-DPO-ES-0.1

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise_weighted dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6921
  • Logps: -91.0309
  • Logits: -2.1203
  • Objective: 0.6893
  • Dpo Loss: 0.6893
  • Regularize: 0.6893
  • Ranking Simple: 0.5559
  • Ranking Idealized: 0.6030
  • Ranking Idealized Expo: 0.5223
  • Wo Beta: 7.4262

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 144
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo Wo Beta
0.6785 0.1417 50 0.6813 -90.8716 -1.6022 0.6843 0.6843 0.6843 0.5259 0.6030 0.5223 7.8749
0.618 0.2834 100 0.6733 -98.8899 -1.7799 0.6766 0.6766 0.6766 0.5399 0.6030 0.5223 7.7840
0.5667 0.4251 150 0.6866 -99.1230 -1.8072 0.6829 0.6829 0.6829 0.5409 0.6030 0.5223 7.8533
0.5214 0.5668 200 0.6901 -99.5388 -1.8894 0.6904 0.6904 0.6904 0.5445 0.6030 0.5223 7.6995
0.4922 0.7085 250 0.6976 -82.7973 -1.9880 0.6916 0.6916 0.6916 0.5476 0.6030 0.5223 7.8790
0.4535 0.8503 300 0.6921 -91.0309 -2.1203 0.6893 0.6893 0.6893 0.5559 0.6030 0.5223 7.4262
0.423 0.9920 350 0.7057 -88.1615 -1.9880 0.6959 0.6959 0.6959 0.5549 0.6030 0.5223 7.9979
0.2847 1.1337 400 0.7315 -101.6926 -2.0862 0.7281 0.7281 0.7281 0.5424 0.6030 0.5223 8.6326
0.2991 1.2754 450 0.7008 -92.7942 -1.8470 0.6980 0.6980 0.6980 0.5621 0.6030 0.5223 8.2584
0.3065 1.4171 500 0.7180 -96.6747 -2.0065 0.7147 0.7147 0.7147 0.5554 0.6030 0.5223 8.2522
0.2895 1.5588 550 0.7044 -104.2469 -1.8870 0.7077 0.7077 0.7077 0.5652 0.6030 0.5223 8.1947

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1