metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise
model-index:
- name: qwen2.5-0.5b-expo-DPO-ES-0.1
results: []
qwen2.5-0.5b-expo-DPO-ES-0.1
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:
- Loss: 0.6923
- Logps: -90.9491
- Logits: -2.1209
- Objective: 0.6894
- Dpo Loss: 0.6894
- Regularize: 0.6894
- Ranking Simple: 0.5564
- Ranking Idealized: 0.6030
- Ranking Idealized Expo: 0.5223
- Wo Beta: 7.4232
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6785 | 0.1417 | 50 | 0.6814 | -90.8721 | -1.6022 | 0.6843 | 0.6843 | 0.6843 | 0.5259 | 0.6030 | 0.5223 | 7.8749 |
0.618 | 0.2834 | 100 | 0.6733 | -98.8900 | -1.7799 | 0.6766 | 0.6766 | 0.6766 | 0.5399 | 0.6030 | 0.5223 | 7.7840 |
0.5667 | 0.4251 | 150 | 0.6867 | -99.1217 | -1.8072 | 0.6829 | 0.6829 | 0.6829 | 0.5409 | 0.6030 | 0.5223 | 7.8537 |
0.5214 | 0.5668 | 200 | 0.6902 | -99.5153 | -1.8895 | 0.6905 | 0.6905 | 0.6905 | 0.5445 | 0.6030 | 0.5223 | 7.7013 |
0.4922 | 0.7085 | 250 | 0.6976 | -82.8384 | -1.9887 | 0.6914 | 0.6914 | 0.6914 | 0.5481 | 0.6030 | 0.5223 | 7.8784 |
0.4535 | 0.8503 | 300 | 0.6923 | -90.9491 | -2.1209 | 0.6894 | 0.6894 | 0.6894 | 0.5564 | 0.6030 | 0.5223 | 7.4232 |
0.4228 | 0.9920 | 350 | 0.7064 | -87.7231 | -1.9803 | 0.6968 | 0.6968 | 0.6968 | 0.5538 | 0.6030 | 0.5223 | 8.0253 |
0.2845 | 1.1337 | 400 | 0.7305 | -101.3180 | -2.0805 | 0.7269 | 0.7269 | 0.7269 | 0.5430 | 0.6030 | 0.5223 | 8.6164 |
0.2989 | 1.2754 | 450 | 0.7005 | -93.1955 | -1.8646 | 0.6974 | 0.6974 | 0.6974 | 0.5606 | 0.6030 | 0.5223 | 8.2386 |
0.3065 | 1.4171 | 500 | 0.7179 | -97.0137 | -1.9983 | 0.7147 | 0.7147 | 0.7147 | 0.5549 | 0.6030 | 0.5223 | 8.2760 |
0.2885 | 1.5588 | 550 | 0.7091 | -107.9610 | -1.9041 | 0.7134 | 0.7134 | 0.7134 | 0.5616 | 0.6030 | 0.5223 | 8.1968 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1