hZzy's picture
End of training
0fb2aea verified
|
raw
history blame
4.32 kB
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - alignment-handbook
  - ndcg
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise
model-index:
  - name: qwen2.5-0.5b-expo-DPO-ES-0.01
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-DPO-ES-0.01

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6894
  • Logps: -99.3821
  • Logits: -1.7611
  • Objective: 0.6902
  • Dpo Loss: 0.6902
  • Regularize: 0.6902
  • Ranking Simple: 0.5305
  • Ranking Idealized: 0.8732
  • Ranking Idealized Expo: 0.5321
  • Wo Beta: 9.3575

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 144
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Dpo Loss Logits Logps Validation Loss Objective Ranking Idealized Ranking Idealized Expo Ranking Simple Regularize Wo Beta
0.6907 0.1417 50 0.6902 -1.7611 -99.3821 0.6894 0.6902 0.8732 0.5321 0.5305 0.6902 9.3575
0.6701 0.2834 100 0.6896 -1.8467 -153.5716 0.6837 0.6896 0.8732 0.5321 0.5518 0.6896 14.1741
0.637 0.4251 150 0.6765 -2.4614 -198.9269 0.6723 0.6765 0.8732 0.5321 0.5823 0.6765 17.2098
0.5833 0.5668 200 0.6780 -3.3478 -256.0312 0.6729 0.6780 0.8732 0.5321 0.5797 0.6780 21.7109
0.5439 0.7085 250 0.6858 -3.6269 -257.3546 0.6781 0.6858 0.8732 0.5321 0.5683 0.6858 22.9139
0.5077 0.8503 300 0.6685 -4.6100 -319.3935 0.6640 0.6685 0.8732 0.5321 0.5828 0.6685 23.6506
0.4786 0.9920 350 0.6867 -368.7014 -4.9192 0.6897 0.6897 0.6897 0.5751 0.8732 0.5321 27.7113
0.3619 1.1337 400 0.6961 -392.7018 -5.5801 0.6990 0.6990 0.6990 0.5849 0.8732 0.5321 32.0730
0.3679 1.2754 450 0.6843 -349.2029 -5.2450 0.6953 0.6953 0.6953 0.5885 0.8732 0.5321 31.3199
0.3662 1.4171 500 0.6858 -350.7137 -5.8233 0.6903 0.6903 0.6903 0.5890 0.8732 0.5321 30.2726
0.3485 1.5588 550 0.6901 -349.5348 -5.2492 0.6972 0.6972 0.6972 0.5719 0.8732 0.5321 31.1765

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1