Keep getting unpickling error
I'm running the code exactly as is in the instructions. E.g.
import cv2
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import torch
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.imread("person.jpg")
faces = app.get(image)
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face
and then
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from PIL import Image
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
v2 = False
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
ip_ckpt = "ip-adapter-faceid-plus_sd15.bin" if not v2 else "ip-adapter-faceid-plusv2_sd15.bin"
device = "cuda"
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
feature_extractor=None,
safety_checker=None
)
# load ip-adapter
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)
# generate image
prompt = "photo of a woman in red dress in a garden"
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
images = ip_model.generate(
prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds, shortcut=v2, s_scale=1.0,
num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
)
but I always get:
```python
UnpicklingError Traceback (most recent call last)
in <cell line: 34>()
32
33 # load ip-adapter
---> 34 ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)
35
36 # generate image
3 frames
/usr/local/lib/python3.10/dist-packages/torch/serialization.py in _legacy_load(f, map_location, pickle_module, **pickle_load_args)
1244 "functionality.")
1245
-> 1246 magic_number = pickle_module.load(f, **pickle_load_args)
1247 if magic_number != MAGIC_NUMBER:
1248 raise RuntimeError("Invalid magic number; corrupt file?")
UnpicklingError: invalid load key, 'v'.
and I always install it all this way (in a colab pro with A100s etc)
``` python
!pip install --upgrade opencv-python diffusers transforms insightface onnxruntime einops accelerate
The pip installations don't error out. All the versions are compatible, etc.
I don't understand what's going on. I tried with the regular IPAdapterFaceID
etc.
Any suggestions on what else to check?
Found the solution. Sorry I didn't download the ckpt files correctly (didn't install git lfs well).