metadata
inference: false
language:
- en
license: llama2
model_type: llama
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
- h2ogpt
h2oGPT clone of Meta's Llama 2 13B.
This model can be fine-tuned with H2O.ai open-source software:
- h2oGPT https://github.com/h2oai/h2ogpt/
- H2O LLM Studio https://h2o.ai/platform/ai-cloud/make/llm-studio/
Try our live h2oGPT demo with side-by-side LLM comparisons and private document chat!
Model Architecture
LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(32000, 5120, padding_idx=0)
(layers): ModuleList(
(0-39): 40 x LlamaDecoderLayer(
(self_attn): LlamaAttention(
(q_proj): Linear(in_features=5120, out_features=5120, bias=False)
(k_proj): Linear(in_features=5120, out_features=5120, bias=False)
(v_proj): Linear(in_features=5120, out_features=5120, bias=False)
(o_proj): Linear(in_features=5120, out_features=5120, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=5120, out_features=13824, bias=False)
(up_proj): Linear(in_features=5120, out_features=13824, bias=False)
(down_proj): Linear(in_features=13824, out_features=5120, bias=False)
(act_fn): SiLUActivation()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()
)
)
(norm): LlamaRMSNorm()
)
(lm_head): Linear(in_features=5120, out_features=32000, bias=False)
)