ybabakhin's picture
Update README.md
44fa2c8 verified
---
language:
- en
library_name: transformers
license: apache-2.0
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
thumbnail: >-
https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
pipeline_tag: text-generation
quantized_by: h2oai
---
# h2o-danube3-500m-chat-GGUF
- Model creator: [H2O.ai](https://huggingface.co/h2oai)
- Original model: [h2oai/h2o-danube3-500m-chat](https://huggingface.co/h2oai/h2o-danube3-500m-chat)
## Description
This repo contains GGUF format model files for [h2o-danube3-500m-chat](https://huggingface.co/h2oai/h2o-danube3-500m-chat) quantized using [llama.cpp](https://github.com/ggerganov/llama.cpp/) framework.
Table below summarizes different quantized versions of [h2o-danube3-500m-chat](https://huggingface.co/h2oai/h2o-danube3-500m-chat). It shows the trade-off between size, speed and quality of the models.
| Name | Quant method | Model size | MT-Bench AVG | Perplexity | Tokens per second |
|:----------------------------------|:----------------------------------:|:----------:|:------------:|:------------:|:-------------------:|
| [h2o-danube3-500m-chat-F16.gguf](https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF/blob/main/h2o-danube3-500m-chat-F16.gguf) | F16 | 1.03 GB | 3.34 | 9.46 | 1870 |
| [h2o-danube3-500m-chat-Q8_0.gguf](https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF/blob/main/h2o-danube3-500m-chat-Q8_0.gguf) | Q8_0 | 0.55 GB | 3.76 | 9.46 | 2144 |
| [h2o-danube3-500m-chat-Q6_K.gguf](https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF/blob/main/h2o-danube3-500m-chat-Q6_K.gguf) | Q6_K | 0.42 GB | 3.77 | 9.46 | 2418 |
| [h2o-danube3-500m-chat-Q5_K_M.gguf](https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF/blob/main/h2o-danube3-500m-chat-Q5_K_M.gguf) | Q5_K_M | 0.37 GB | 3.20 | 9.55 | 2430 |
| [h2o-danube3-500m-chat-Q4_K_M.gguf](https://huggingface.co/h2oai/h2o-danube3-500m-chat-GGUF/blob/main/h2o-danube3-500m-chat-Q4_K_M.gguf) | Q4_K_M | 0.32 GB | 3.16 | 9.96 | 2427 |
Columns in the table are:
* Name -- model name and link
* Quant method -- quantization method
* Model size -- size of the model in gigabytes
* MT-Bench AVG -- [MT-Bench](https://arxiv.org/abs/2306.05685) benchmark score. The score is from 1 to 10, the higher, the better
* Perplexity -- perplexity metric on WikiText-2 dataset. It's reported in a perplexity test from llama.cpp. The lower, the better
* Tokens per second -- generation speed in tokens per second, as reported in a perplexity test from llama.cpp. The higher, the better. Speed tests are done on a single H100 GPU
## Prompt template
```
<|prompt|>Why is drinking water so healthy?</s><|answer|>
```