library_name: peft | |
tags: | |
- gpt-j | |
- gpt-j-6b | |
- code | |
- instruct | |
- instruct-code | |
- code-alpaca | |
- alpaca-instruct | |
- alpaca | |
- llama7b | |
- gpt2 | |
datasets: | |
- ewof/code-alpaca-instruct-unfiltered | |
base_model: EleutherAI/gpt-j-6b | |
We finetuned GPT-J 6B on Code-Alpaca-Instruct Dataset (ewof/code-alpaca-instruct-unfiltered) for 5 epochs or ~ 25,000 steps using [MonsterAPI](https://monsterapi.ai) no-code [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm). | |
This dataset is HuggingFaceH4/CodeAlpaca_20K unfiltered, removing 36 instances of blatant alignment. | |
The finetuning session got completed in 206 minutes and costed us only `$8` for the entire finetuning run! | |
#### Hyperparameters & Run details: | |
- Model Path: EleutherAI/gpt-j-6b | |
- Dataset: ewof/code-alpaca-instruct-unfiltered | |
- Learning rate: 0.0003 | |
- Number of epochs: 5 | |
- Data split: Training: 90% / Validation: 10% | |
- Gradient accumulation steps: 1 | |
Loss metrics: | |
![training loss](train-loss.png "Training loss") | |
--- | |
license: apache-2.0 | |
--- |