metadata
library_name: transformers
license: mit
base_model: BAAI/bge-small-en-v1.5
tags:
- generated_from_trainer
model-index:
- name: bge-small-en-v1.5-2024-12-06_14-23-52-relevancy-1
results: []
bge-small-en-v1.5-2024-12-06_14-23-52-relevancy-1
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0219
- Spearman: 0.9313
- Pearson: 0.9323
- Mse: 0.0219
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Spearman | Pearson | Mse |
---|---|---|---|---|---|---|
0.0334 | 0.3998 | 1055 | 0.0291 | 0.9039 | 0.9070 | 0.0291 |
0.0276 | 0.7997 | 2110 | 0.0264 | 0.9129 | 0.9165 | 0.0264 |
0.0244 | 1.1995 | 3165 | 0.0253 | 0.9185 | 0.9215 | 0.0253 |
0.0239 | 1.5994 | 4220 | 0.0230 | 0.9235 | 0.9271 | 0.0230 |
0.0217 | 1.9992 | 5275 | 0.0234 | 0.9252 | 0.9294 | 0.0234 |
0.0186 | 2.3991 | 6330 | 0.0228 | 0.9272 | 0.9304 | 0.0228 |
0.0174 | 2.7989 | 7385 | 0.0219 | 0.9286 | 0.9320 | 0.0219 |
0.0136 | 3.1988 | 8440 | 0.0221 | 0.9290 | 0.9314 | 0.0221 |
0.014 | 3.5986 | 9495 | 0.0218 | 0.9304 | 0.9329 | 0.0218 |
0.0149 | 3.9985 | 10550 | 0.0215 | 0.9305 | 0.9332 | 0.0215 |
0.0112 | 4.3983 | 11605 | 0.0217 | 0.9305 | 0.9332 | 0.0217 |
0.0127 | 4.7982 | 12660 | 0.0217 | 0.9306 | 0.9333 | 0.0217 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 2.19.2
- Tokenizers 0.20.3