gutsartificial's picture
bge-small-en-v1.5-2024-12-06_14-23-52
0e04cbf verified
|
raw
history blame
2.62 kB
metadata
library_name: transformers
license: mit
base_model: BAAI/bge-small-en-v1.5
tags:
  - generated_from_trainer
model-index:
  - name: bge-small-en-v1.5-2024-12-06_14-23-52-relevancy-1
    results: []

bge-small-en-v1.5-2024-12-06_14-23-52-relevancy-1

This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0219
  • Spearman: 0.9313
  • Pearson: 0.9323
  • Mse: 0.0219

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Spearman Pearson Mse
0.0334 0.3998 1055 0.0291 0.9039 0.9070 0.0291
0.0276 0.7997 2110 0.0264 0.9129 0.9165 0.0264
0.0244 1.1995 3165 0.0253 0.9185 0.9215 0.0253
0.0239 1.5994 4220 0.0230 0.9235 0.9271 0.0230
0.0217 1.9992 5275 0.0234 0.9252 0.9294 0.0234
0.0186 2.3991 6330 0.0228 0.9272 0.9304 0.0228
0.0174 2.7989 7385 0.0219 0.9286 0.9320 0.0219
0.0136 3.1988 8440 0.0221 0.9290 0.9314 0.0221
0.014 3.5986 9495 0.0218 0.9304 0.9329 0.0218
0.0149 3.9985 10550 0.0215 0.9305 0.9332 0.0215
0.0112 4.3983 11605 0.0217 0.9305 0.9332 0.0217
0.0127 4.7982 12660 0.0217 0.9306 0.9333 0.0217

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.20.3