dokki-lilt / README.md
Gustavo Albuquerque Barros
End of training
e27bcc5
|
raw
history blame
5.23 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
datasets:
  - funsd-layoutlmv3
model-index:
  - name: dokki-lilt
    results: []

dokki-lilt

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2732
  • Answer: {'precision': 0.859504132231405, 'recall': 0.8910648714810282, 'f1': 0.8750000000000001, 'number': 817}
  • Header: {'precision': 0.6355140186915887, 'recall': 0.5714285714285714, 'f1': 0.6017699115044248, 'number': 119}
  • Question: {'precision': 0.886672710788758, 'recall': 0.9080779944289693, 'f1': 0.8972477064220182, 'number': 1077}
  • Overall Precision: 0.8624
  • Overall Recall: 0.8813
  • Overall F1: 0.8717
  • Overall Accuracy: 0.8133

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 600
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.6927 5.26 100 0.7696 {'precision': 0.7593582887700535, 'recall': 0.8690330477356181, 'f1': 0.8105022831050229, 'number': 817} {'precision': 0.5166666666666667, 'recall': 0.2605042016806723, 'f1': 0.3463687150837989, 'number': 119} {'precision': 0.8429973238180196, 'recall': 0.8774373259052924, 'f1': 0.8598726114649682, 'number': 1077} 0.7968 0.8376 0.8167 0.7782
0.1598 10.53 200 1.0235 {'precision': 0.8254504504504504, 'recall': 0.8971848225214198, 'f1': 0.859824046920821, 'number': 817} {'precision': 0.6097560975609756, 'recall': 0.42016806722689076, 'f1': 0.4975124378109453, 'number': 119} {'precision': 0.8744313011828936, 'recall': 0.8922934076137419, 'f1': 0.8832720588235293, 'number': 1077} 0.8429 0.8664 0.8545 0.7863
0.0536 15.79 300 1.1157 {'precision': 0.8597785977859779, 'recall': 0.8555691554467564, 'f1': 0.8576687116564417, 'number': 817} {'precision': 0.5789473684210527, 'recall': 0.46218487394957986, 'f1': 0.514018691588785, 'number': 119} {'precision': 0.8663793103448276, 'recall': 0.9331476323119777, 'f1': 0.8985248100134109, 'number': 1077} 0.8506 0.8738 0.8620 0.8083
0.0223 21.05 400 1.2167 {'precision': 0.8367117117117117, 'recall': 0.9094247246022031, 'f1': 0.8715542521994134, 'number': 817} {'precision': 0.5149253731343284, 'recall': 0.5798319327731093, 'f1': 0.5454545454545455, 'number': 119} {'precision': 0.8898148148148148, 'recall': 0.8922934076137419, 'f1': 0.8910523875753361, 'number': 1077} 0.8435 0.8808 0.8617 0.8083
0.0094 26.32 500 1.2313 {'precision': 0.8564760793465578, 'recall': 0.8984088127294981, 'f1': 0.8769414575866189, 'number': 817} {'precision': 0.6534653465346535, 'recall': 0.5546218487394958, 'f1': 0.6000000000000001, 'number': 119} {'precision': 0.8853790613718412, 'recall': 0.9108635097493036, 'f1': 0.8979405034324943, 'number': 1077} 0.8621 0.8847 0.8733 0.8161
0.0051 31.58 600 1.2732 {'precision': 0.859504132231405, 'recall': 0.8910648714810282, 'f1': 0.8750000000000001, 'number': 817} {'precision': 0.6355140186915887, 'recall': 0.5714285714285714, 'f1': 0.6017699115044248, 'number': 119} {'precision': 0.886672710788758, 'recall': 0.9080779944289693, 'f1': 0.8972477064220182, 'number': 1077} 0.8624 0.8813 0.8717 0.8133

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1