|
--- |
|
license: mit |
|
base_model: SCUT-DLVCLab/lilt-roberta-en-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- funsd-layoutlmv3 |
|
model-index: |
|
- name: dokki-lilt |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# dokki-lilt |
|
|
|
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2732 |
|
- Answer: {'precision': 0.859504132231405, 'recall': 0.8910648714810282, 'f1': 0.8750000000000001, 'number': 817} |
|
- Header: {'precision': 0.6355140186915887, 'recall': 0.5714285714285714, 'f1': 0.6017699115044248, 'number': 119} |
|
- Question: {'precision': 0.886672710788758, 'recall': 0.9080779944289693, 'f1': 0.8972477064220182, 'number': 1077} |
|
- Overall Precision: 0.8624 |
|
- Overall Recall: 0.8813 |
|
- Overall F1: 0.8717 |
|
- Overall Accuracy: 0.8133 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 600 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 0.6927 | 5.26 | 100 | 0.7696 | {'precision': 0.7593582887700535, 'recall': 0.8690330477356181, 'f1': 0.8105022831050229, 'number': 817} | {'precision': 0.5166666666666667, 'recall': 0.2605042016806723, 'f1': 0.3463687150837989, 'number': 119} | {'precision': 0.8429973238180196, 'recall': 0.8774373259052924, 'f1': 0.8598726114649682, 'number': 1077} | 0.7968 | 0.8376 | 0.8167 | 0.7782 | |
|
| 0.1598 | 10.53 | 200 | 1.0235 | {'precision': 0.8254504504504504, 'recall': 0.8971848225214198, 'f1': 0.859824046920821, 'number': 817} | {'precision': 0.6097560975609756, 'recall': 0.42016806722689076, 'f1': 0.4975124378109453, 'number': 119} | {'precision': 0.8744313011828936, 'recall': 0.8922934076137419, 'f1': 0.8832720588235293, 'number': 1077} | 0.8429 | 0.8664 | 0.8545 | 0.7863 | |
|
| 0.0536 | 15.79 | 300 | 1.1157 | {'precision': 0.8597785977859779, 'recall': 0.8555691554467564, 'f1': 0.8576687116564417, 'number': 817} | {'precision': 0.5789473684210527, 'recall': 0.46218487394957986, 'f1': 0.514018691588785, 'number': 119} | {'precision': 0.8663793103448276, 'recall': 0.9331476323119777, 'f1': 0.8985248100134109, 'number': 1077} | 0.8506 | 0.8738 | 0.8620 | 0.8083 | |
|
| 0.0223 | 21.05 | 400 | 1.2167 | {'precision': 0.8367117117117117, 'recall': 0.9094247246022031, 'f1': 0.8715542521994134, 'number': 817} | {'precision': 0.5149253731343284, 'recall': 0.5798319327731093, 'f1': 0.5454545454545455, 'number': 119} | {'precision': 0.8898148148148148, 'recall': 0.8922934076137419, 'f1': 0.8910523875753361, 'number': 1077} | 0.8435 | 0.8808 | 0.8617 | 0.8083 | |
|
| 0.0094 | 26.32 | 500 | 1.2313 | {'precision': 0.8564760793465578, 'recall': 0.8984088127294981, 'f1': 0.8769414575866189, 'number': 817} | {'precision': 0.6534653465346535, 'recall': 0.5546218487394958, 'f1': 0.6000000000000001, 'number': 119} | {'precision': 0.8853790613718412, 'recall': 0.9108635097493036, 'f1': 0.8979405034324943, 'number': 1077} | 0.8621 | 0.8847 | 0.8733 | 0.8161 | |
|
| 0.0051 | 31.58 | 600 | 1.2732 | {'precision': 0.859504132231405, 'recall': 0.8910648714810282, 'f1': 0.8750000000000001, 'number': 817} | {'precision': 0.6355140186915887, 'recall': 0.5714285714285714, 'f1': 0.6017699115044248, 'number': 119} | {'precision': 0.886672710788758, 'recall': 0.9080779944289693, 'f1': 0.8972477064220182, 'number': 1077} | 0.8624 | 0.8813 | 0.8717 | 0.8133 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|