|
--- |
|
language: |
|
- it |
|
license: apache-2.0 |
|
tags: |
|
- italian |
|
- sequence-to-sequence |
|
- style-transfer |
|
- formality-style-transfer |
|
datasets: |
|
- yahoo/xformal_it |
|
widget: |
|
- text: "Questa performance è a dir poco spiacevole." |
|
- text: "In attesa di un Suo cortese riscontro, Le auguriamo un piacevole proseguimento di giornata." |
|
- text: "Questa visione mi procura una goduria indescrivibile." |
|
- text: "qualora ciò possa interessarti, ti pregherei di contattarmi." |
|
metrics: |
|
- rouge |
|
- bertscore |
|
model-index: |
|
- name: mt5-small-formal-to-informal |
|
results: |
|
- task: |
|
type: formality-style-transfer |
|
name: "Formal-to-informal Style Transfer" |
|
dataset: |
|
type: xformal_it |
|
name: "XFORMAL (Italian Subset)" |
|
metrics: |
|
- type: rouge1 |
|
value: 0.651 |
|
name: "Avg. Test Rouge1" |
|
- type: rouge2 |
|
value: 0.450 |
|
name: "Avg. Test Rouge2" |
|
- type: rougeL |
|
value: 0.631 |
|
name: "Avg. Test RougeL" |
|
- type: bertscore |
|
value: 0.666 |
|
name: "Avg. Test BERTScore" |
|
args: |
|
- model_type: "dbmdz/bert-base-italian-xxl-uncased" |
|
- lang: "it" |
|
- num_layers: 10 |
|
- rescale_with_baseline: True |
|
- baseline_path: "bertscore_baseline_ita.tsv" |
|
co2_eq_emissions: |
|
emissions: "17g" |
|
source: "Google Cloud Platform Carbon Footprint" |
|
training_type: "fine-tuning" |
|
geographical_location: "Eemshaven, Netherlands, Europe" |
|
hardware_used: "1 TPU v3-8 VM" |
|
--- |
|
|
|
# mT5 Small for Formal-to-informal Style Transfer 🤗 |
|
|
|
This repository contains the checkpoint for the [mT5 Small](https://huggingface.co/google/mt5-small) model fine-tuned on Formal-to-informal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). |
|
|
|
A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. |
|
|
|
## Using the model |
|
|
|
Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: |
|
|
|
```python |
|
from transformers import pipelines |
|
|
|
f2i = pipeline("text2text-generation", model='it5/mt5-small-formal-to-informal') |
|
f2i("Vi ringrazio infinitamente per vostra disponibilità") |
|
>>> [{"generated_text": "e grazie per la vostra disponibilità!"}] |
|
``` |
|
|
|
or loaded using autoclasses: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("it5/mt5-small-formal-to-informal") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-small-formal-to-informal") |
|
``` |
|
|
|
If you use this model in your research, please cite our work as: |
|
|
|
```bibtex |
|
@article{sarti-nissim-2022-it5, |
|
title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, |
|
author={Sarti, Gabriele and Nissim, Malvina}, |
|
journal={ArXiv preprint 2203.03759}, |
|
url={https://arxiv.org/abs/2203.03759}, |
|
year={2022}, |
|
month={mar} |
|
} |
|
``` |