seq2seq / README.md
gs224's picture
Add model, config, and tokenizer
a1d9b8f verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/bart-large
tags:
  - generated_from_trainer
datasets:
  - iva_mt_wslot
metrics:
  - bleu
model-index:
  - name: seq2seq
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: iva_mt_wslot
          type: iva_mt_wslot
          config: en-pl
          split: validation
          args: en-pl
        metrics:
          - name: Bleu
            type: bleu
            value: 20.3646

seq2seq

This model is a fine-tuned version of facebook/bart-large on the iva_mt_wslot dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1103
  • Bleu: 20.3646
  • Gen Len: 17.8886

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
1.6673 1.0 1273 1.2760 17.6152 17.5786
1.1375 2.0 2546 1.1103 20.3646 17.8886

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3