gregtozzi's picture
Adding model
e2690ed
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3cb8c05b90>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3cb8c05c20>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3cb8c05cb0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3cb8c05d40>",
"_build": "<function ActorCriticPolicy._build at 0x7f3cb8c05dd0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f3cb8c05e60>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3cb8c05ef0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f3cb8c05f80>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3cb8b8c050>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3cb8b8c0e0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3cb8b8c170>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f3cb8c44f00>"
},
"verbose": 0,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 3014656,
"_total_timesteps": 3000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651866477.0616665,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFMuEL6T5so+ugf1PTOzOb+8Bwy+p5QcPgAAAAAAAAAAMzdWvcUzxjwaVuo9oybNvihHuTz+Hao8AAAAAAAAAACaFUg8BR3quxoIYrubzmk8poxLvRLkRj0AAIA/AACAPw0SFT79zbQ+ApY7vjkMPr9JNyI+9u4CvgAAAAAAAAAANp2TPhRMFj+5DTe+sGE7v5qvwD4dz4m+AAAAAAAAAABNV1890h2mPw3bFT5BbhS/phQ3PXohxz0AAAAAAAAAAM3J+ryoypo/vMe0vQpRSL/UZyy+S27LPAAAAAAAAAAA030cPtYNhj8T5sQ+4545v0MLlj5oDIw+AAAAAAAAAAAAC5S9ayNmP34CEb5EmWe/1dRSvrs837oAAAAAAAAAAGZHx7wgcLA/6h+kvkwIkr4U4hC8Tn8DvgAAAAAAAAAAABgVvCl4a7raYqU7Ot3BuLSgULnNtMO3AACAPwAAgD+AbDO9bPm1u3OdIj68aBc8468DveV+BT0AAIA/AACAP2a6tLut6bQ/1wQPv1r/3z1mpNE7apUBPgAAAAAAAAAAsw6TvRuntD9CPvq+AccjvmTnl70W/rC+AAAAAAAAAACmxbO9qdcTvKoHiD628qy87An9vJm1SD4AAIA/AACAP3Mojz0PyLE/AOFRPjJG5L6YGhY+2agCPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.004885333333333408,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI74y2KolMcUCUhpRSlIwBbJRLsIwBdJRHQKxajYGt6ol1fZQoaAZoCWgPQwhdo+VAj0hyQJSGlFKUaBVLsmgWR0CsWp8aGYa6dX2UKGgGaAloD0MIc7nBUIfLcECUhpRSlGgVS59oFkdArFq7PjXFtXV9lChoBmgJaA9DCNBCAkbXeHFAlIaUUpRoFUuTaBZHQKxa0MwUQCl1fZQoaAZoCWgPQwhbtABtq05zQJSGlFKUaBVL+2gWR0CsWupYLb5/dX2UKGgGaAloD0MIRx0dV+OHcUCUhpRSlGgVS6loFkdArFsErbxmTXV9lChoBmgJaA9DCFIoC1+fgHNAlIaUUpRoFUvBaBZHQKxvmbZOBUd1fZQoaAZoCWgPQwh3EDtT6E1xQJSGlFKUaBVLr2gWR0Csb+b5VOsUdX2UKGgGaAloD0MINGjon6BMckCUhpRSlGgVS7doFkdArG/7ZFocrHV9lChoBmgJaA9DCAtFup9TbnJAlIaUUpRoFUukaBZHQKxwBsZYPoV1fZQoaAZoCWgPQwh4QURqGvpwQJSGlFKUaBVLnmgWR0CscAnied08dX2UKGgGaAloD0MIhSUeUHbAckCUhpRSlGgVS+RoFkdArHAwcPvrnnV9lChoBmgJaA9DCD2dK0qJ7nJAlIaUUpRoFUuwaBZHQKxwQYfGMn91fZQoaAZoCWgPQwjn3y779YlzQJSGlFKUaBVLt2gWR0CscEV/lQuVdX2UKGgGaAloD0MIaAQb17/tcECUhpRSlGgVS5loFkdArHC8chkiEHV9lChoBmgJaA9DCD/9Z80PN3FAlIaUUpRoFUusaBZHQKxw55u63Ap1fZQoaAZoCWgPQwhtVKcD2QpxQJSGlFKUaBVLqGgWR0CscQVKf4ATdX2UKGgGaAloD0MIXwmkxO6Vc0CUhpRSlGgVS8VoFkdArHEvr6ciGHV9lChoBmgJaA9DCJbqAl5mMHNAlIaUUpRoFUvWaBZHQKxxr8eCCjF1fZQoaAZoCWgPQwhTPZl/dNhwQJSGlFKUaBVLqWgWR0CscbTzundgdX2UKGgGaAloD0MIhjyCG6mHckCUhpRSlGgVS9NoFkdArHHA93bEgnV9lChoBmgJaA9DCGmrksj+LHNAlIaUUpRoFUufaBZHQKxx+aESM991fZQoaAZoCWgPQwhDxTh/U4ZxQJSGlFKUaBVLqGgWR0CschIwM6RydX2UKGgGaAloD0MIem8MAYBbckCUhpRSlGgVS7loFkdArHI+IInjQ3V9lChoBmgJaA9DCH/1uG+1hnJAlIaUUpRoFUv0aBZHQKxyQyyD7Il1fZQoaAZoCWgPQwiV0jO9hPVxQJSGlFKUaBVLt2gWR0Cscn2WY4Q0dX2UKGgGaAloD0MIJ/kRvyLfc0CUhpRSlGgVS9RoFkdArHKBtm+TNnV9lChoBmgJaA9DCElJD0OrB3JAlIaUUpRoFUuQaBZHQKxyheN1hb51fZQoaAZoCWgPQwhC6Qsh5z1yQJSGlFKUaBVLv2gWR0CscpN/nW8RdX2UKGgGaAloD0MIc4Bgjl6LckCUhpRSlGgVS8ZoFkdArHKZwMpgC3V9lChoBmgJaA9DCAqFCDjELHJAlIaUUpRoFUuVaBZHQKxy1hn8Koh1fZQoaAZoCWgPQwiJ1LSL6VlxQJSGlFKUaBVLp2gWR0CsczoQFs55dX2UKGgGaAloD0MI/YhfsQYbZ0CUhpRSlGgVTegDaBZHQKxzaISlFc91fZQoaAZoCWgPQwib/1cduZ1zQJSGlFKUaBVL0mgWR0Csc3sOf/WEdX2UKGgGaAloD0MIPWU1XY8zcUCUhpRSlGgVS6poFkdArHO3qJMxoXV9lChoBmgJaA9DCMUbmUe+lHJAlIaUUpRoFUuxaBZHQKxzz1Iy0rt1fZQoaAZoCWgPQwg0go3rH1FxQJSGlFKUaBVLrmgWR0Csc9ENFz+4dX2UKGgGaAloD0MIWaX0TO/9cECUhpRSlGgVS49oFkdArHPorFwT/XV9lChoBmgJaA9DCHqlLEOcsHFAlIaUUpRoFUupaBZHQKx0DDgqEvl1fZQoaAZoCWgPQwiOdXEbDRNwQJSGlFKUaBVLoGgWR0CsdBwaBI4EdX2UKGgGaAloD0MIED//Pbi0c0CUhpRSlGgVS6poFkdArHSFbor4FnV9lChoBmgJaA9DCNLI5xUPZ3NAlIaUUpRoFUvZaBZHQKx0jYbKifx1fZQoaAZoCWgPQwhM/bypiGlyQJSGlFKUaBVLsmgWR0CsdJm7rcCYdX2UKGgGaAloD0MIPbmmQKYMcUCUhpRSlGgVS8NoFkdArHTERBeHBXV9lChoBmgJaA9DCJOP3QWK8XBAlIaUUpRoFUuwaBZHQKx05S2H+Id1fZQoaAZoCWgPQwiiQnVzseNzQJSGlFKUaBVL12gWR0CsdRUQkHD8dX2UKGgGaAloD0MI7N6KxETmckCUhpRSlGgVS6JoFkdArHUZWT5ft3V9lChoBmgJaA9DCI7NjlRfRXNAlIaUUpRoFUvfaBZHQKx1Jeu3c591fZQoaAZoCWgPQwgEyqZcIa5xQJSGlFKUaBVLm2gWR0CsdSofSx7idX2UKGgGaAloD0MIZAPpYtOERkCUhpRSlGgVS1ZoFkdArHVwEfT1CnV9lChoBmgJaA9DCMd/gSBA4G9AlIaUUpRoFUuUaBZHQKx1chIvrW11fZQoaAZoCWgPQwgR4PQu3iRyQJSGlFKUaBVLnmgWR0CsdXSHEdeZdX2UKGgGaAloD0MI0CnIz8aAckCUhpRSlGgVS5BoFkdArHWtAu7HyXV9lChoBmgJaA9DCMJoVrbPyXFAlIaUUpRoFUuuaBZHQKx1s+V1Oj91fZQoaAZoCWgPQwgmxFxSNZh0QJSGlFKUaBVL1WgWR0CsdchX8wYcdX2UKGgGaAloD0MIRu1+FaD/c0CUhpRSlGgVS7BoFkdArHXSPluFYnV9lChoBmgJaA9DCEEQIEMHTXNAlIaUUpRoFUvAaBZHQKx2HQ3PzFx1fZQoaAZoCWgPQwhcH9YbdfFyQJSGlFKUaBVLuGgWR0CsdnUm+j/NdX2UKGgGaAloD0MI0At3LowRcECUhpRSlGgVS7ZoFkdArHaCe05U+HV9lChoBmgJaA9DCMwJ2uSw2XJAlIaUUpRoFUuyaBZHQKx2pLA57w91fZQoaAZoCWgPQwi5UzpY/3RxQJSGlFKUaBVLmWgWR0CsdrPUaybAdX2UKGgGaAloD0MIkfKTat84ckCUhpRSlGgVS7loFkdArHbeL9/BnHV9lChoBmgJaA9DCMMQOX09cHJAlIaUUpRoFUulaBZHQKx25ua4MF51fZQoaAZoCWgPQwi0WmCPSWFxQJSGlFKUaBVLjGgWR0CsdvscZLqVdX2UKGgGaAloD0MIfVwbKoZJdECUhpRSlGgVS7toFkdArHcP3FkxynV9lChoBmgJaA9DCNS5opQQV3NAlIaUUpRoFUu/aBZHQKx3Km1pj+d1fZQoaAZoCWgPQwhVMgBUsZ1xQJSGlFKUaBVLsWgWR0Csd1AmZ3LWdX2UKGgGaAloD0MI+FJ40OxuckCUhpRSlGgVS7ZoFkdArHdc0cfeUXV9lChoBmgJaA9DCNYdi22Si3NAlIaUUpRoFUugaBZHQKx3YPSUkfN1fZQoaAZoCWgPQwhU/UrnA41yQJSGlFKUaBVLmmgWR0Csd2pobn5jdX2UKGgGaAloD0MItoR80HNvc0CUhpRSlGgVS59oFkdArHd/IbOu73V9lChoBmgJaA9DCIwTX+1odXNAlIaUUpRoFUvFaBZHQKx3wtg8bJh1fZQoaAZoCWgPQwjvWGyTylVyQJSGlFKUaBVLj2gWR0Csd/Xm3fALdX2UKGgGaAloD0MIs874vrg9c0CUhpRSlGgVS7hoFkdArHgK6jFhonV9lChoBmgJaA9DCPBt+rNf0HBAlIaUUpRoFUucaBZHQKx4Dk1/DtR1fZQoaAZoCWgPQwgOhjqssDBxQJSGlFKUaBVLnmgWR0CseFSCe2/jdX2UKGgGaAloD0MIGlOwxllxckCUhpRSlGgVS8xoFkdArHjWHBUJfXV9lChoBmgJaA9DCNgtAmP94XJAlIaUUpRoFUu5aBZHQKx41lxOtXB1fZQoaAZoCWgPQwiY3CiyVvtxQJSGlFKUaBVLvGgWR0CseOei8FpxdX2UKGgGaAloD0MITnrf+Bo5cUCUhpRSlGgVS45oFkdArHjuiUPhAHV9lChoBmgJaA9DCKqaIOp+vnJAlIaUUpRoFUulaBZHQKx49K5kK/p1fZQoaAZoCWgPQwh3nnjO1ldyQJSGlFKUaBVLtGgWR0CseQBl18sudX2UKGgGaAloD0MI1LmilJDqcUCUhpRSlGgVS5toFkdArHkIEIPbwnV9lChoBmgJaA9DCOXTY1tGCXNAlIaUUpRoFUvEaBZHQKx5E9oN/fB1fZQoaAZoCWgPQwj0iTxJugFxQJSGlFKUaBVLsWgWR0CseYFDWsijdX2UKGgGaAloD0MIttYXCW0qdECUhpRSlGgVS8loFkdArHmpw2l2vHV9lChoBmgJaA9DCAsOL4hIgXRAlIaUUpRoFUvSaBZHQKx5tpudf9h1fZQoaAZoCWgPQwimKQKc3gRyQJSGlFKUaBVLuGgWR0CsedrP+n63dX2UKGgGaAloD0MIenHiqx1bcUCUhpRSlGgVS7doFkdArHoRbhWHUXV9lChoBmgJaA9DCO+MtioJIXJAlIaUUpRoFUu0aBZHQKx6HapxWDJ1fZQoaAZoCWgPQwhlGHeDqEBxQJSGlFKUaBVLuWgWR0CsejBH9WIXdX2UKGgGaAloD0MIiNnLttPKc0CUhpRSlGgVS6RoFkdArHo2+GoJiXV9lChoBmgJaA9DCDtVvmekR3BAlIaUUpRoFUuTaBZHQKx6i8YAKfF1fZQoaAZoCWgPQwgVcqWexY1wQJSGlFKUaBVLnGgWR0Cseo420iQldX2UKGgGaAloD0MIHxMpzaYocECUhpRSlGgVS51oFkdArHqqRISUT3V9lChoBmgJaA9DCGtkV1qGF3JAlIaUUpRoFUuSaBZHQKx6q9ovi991fZQoaAZoCWgPQwjc9dIUQWNwQJSGlFKUaBVLqWgWR0Cseq+tr9EUdX2UKGgGaAloD0MIthFPdvO3ckCUhpRSlGgVS7VoFkdArHrYptrKvHV9lChoBmgJaA9DCF1txf4ySHJAlIaUUpRoFUuzaBZHQKx656N2ki51fZQoaAZoCWgPQwjbF9ALtw1zQJSGlFKUaBVLtmgWR0CsevYywfQsdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 5888,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 256,
"n_epochs": 32,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}