Adding model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- just_maybe.zip +3 -0
- just_maybe/_stable_baselines3_version +1 -0
- just_maybe/data +94 -0
- just_maybe/policy.optimizer.pth +3 -0
- just_maybe/policy.pth +3 -0
- just_maybe/pytorch_variables.pth +3 -0
- just_maybe/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 292.99 +/- 18.45
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3cb8c05b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3cb8c05c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3cb8c05cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3cb8c05d40>", "_build": "<function ActorCriticPolicy._build at 0x7f3cb8c05dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3cb8c05e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3cb8c05ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3cb8c05f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3cb8b8c050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3cb8b8c0e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3cb8b8c170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3cb8c44f00>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651866477.0616665, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFMuEL6T5so+ugf1PTOzOb+8Bwy+p5QcPgAAAAAAAAAAMzdWvcUzxjwaVuo9oybNvihHuTz+Hao8AAAAAAAAAACaFUg8BR3quxoIYrubzmk8poxLvRLkRj0AAIA/AACAPw0SFT79zbQ+ApY7vjkMPr9JNyI+9u4CvgAAAAAAAAAANp2TPhRMFj+5DTe+sGE7v5qvwD4dz4m+AAAAAAAAAABNV1890h2mPw3bFT5BbhS/phQ3PXohxz0AAAAAAAAAAM3J+ryoypo/vMe0vQpRSL/UZyy+S27LPAAAAAAAAAAA030cPtYNhj8T5sQ+4545v0MLlj5oDIw+AAAAAAAAAAAAC5S9ayNmP34CEb5EmWe/1dRSvrs837oAAAAAAAAAAGZHx7wgcLA/6h+kvkwIkr4U4hC8Tn8DvgAAAAAAAAAAABgVvCl4a7raYqU7Ot3BuLSgULnNtMO3AACAPwAAgD+AbDO9bPm1u3OdIj68aBc8468DveV+BT0AAIA/AACAP2a6tLut6bQ/1wQPv1r/3z1mpNE7apUBPgAAAAAAAAAAsw6TvRuntD9CPvq+AccjvmTnl70W/rC+AAAAAAAAAACmxbO9qdcTvKoHiD628qy87An9vJm1SD4AAIA/AACAP3Mojz0PyLE/AOFRPjJG5L6YGhY+2agCPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI74y2KolMcUCUhpRSlIwBbJRLsIwBdJRHQKxajYGt6ol1fZQoaAZoCWgPQwhdo+VAj0hyQJSGlFKUaBVLsmgWR0CsWp8aGYa6dX2UKGgGaAloD0MIc7nBUIfLcECUhpRSlGgVS59oFkdArFq7PjXFtXV9lChoBmgJaA9DCNBCAkbXeHFAlIaUUpRoFUuTaBZHQKxa0MwUQCl1fZQoaAZoCWgPQwhbtABtq05zQJSGlFKUaBVL+2gWR0CsWupYLb5/dX2UKGgGaAloD0MIRx0dV+OHcUCUhpRSlGgVS6loFkdArFsErbxmTXV9lChoBmgJaA9DCFIoC1+fgHNAlIaUUpRoFUvBaBZHQKxvmbZOBUd1fZQoaAZoCWgPQwh3EDtT6E1xQJSGlFKUaBVLr2gWR0Csb+b5VOsUdX2UKGgGaAloD0MINGjon6BMckCUhpRSlGgVS7doFkdArG/7ZFocrHV9lChoBmgJaA9DCAtFup9TbnJAlIaUUpRoFUukaBZHQKxwBsZYPoV1fZQoaAZoCWgPQwh4QURqGvpwQJSGlFKUaBVLnmgWR0CscAnied08dX2UKGgGaAloD0MIhSUeUHbAckCUhpRSlGgVS+RoFkdArHAwcPvrnnV9lChoBmgJaA9DCD2dK0qJ7nJAlIaUUpRoFUuwaBZHQKxwQYfGMn91fZQoaAZoCWgPQwjn3y779YlzQJSGlFKUaBVLt2gWR0CscEV/lQuVdX2UKGgGaAloD0MIaAQb17/tcECUhpRSlGgVS5loFkdArHC8chkiEHV9lChoBmgJaA9DCD/9Z80PN3FAlIaUUpRoFUusaBZHQKxw55u63Ap1fZQoaAZoCWgPQwhtVKcD2QpxQJSGlFKUaBVLqGgWR0CscQVKf4ATdX2UKGgGaAloD0MIXwmkxO6Vc0CUhpRSlGgVS8VoFkdArHEvr6ciGHV9lChoBmgJaA9DCJbqAl5mMHNAlIaUUpRoFUvWaBZHQKxxr8eCCjF1fZQoaAZoCWgPQwhTPZl/dNhwQJSGlFKUaBVLqWgWR0CscbTzundgdX2UKGgGaAloD0MIhjyCG6mHckCUhpRSlGgVS9NoFkdArHHA93bEgnV9lChoBmgJaA9DCGmrksj+LHNAlIaUUpRoFUufaBZHQKxx+aESM991fZQoaAZoCWgPQwhDxTh/U4ZxQJSGlFKUaBVLqGgWR0CschIwM6RydX2UKGgGaAloD0MIem8MAYBbckCUhpRSlGgVS7loFkdArHI+IInjQ3V9lChoBmgJaA9DCH/1uG+1hnJAlIaUUpRoFUv0aBZHQKxyQyyD7Il1fZQoaAZoCWgPQwiV0jO9hPVxQJSGlFKUaBVLt2gWR0Cscn2WY4Q0dX2UKGgGaAloD0MIJ/kRvyLfc0CUhpRSlGgVS9RoFkdArHKBtm+TNnV9lChoBmgJaA9DCElJD0OrB3JAlIaUUpRoFUuQaBZHQKxyheN1hb51fZQoaAZoCWgPQwhC6Qsh5z1yQJSGlFKUaBVLv2gWR0CscpN/nW8RdX2UKGgGaAloD0MIc4Bgjl6LckCUhpRSlGgVS8ZoFkdArHKZwMpgC3V9lChoBmgJaA9DCAqFCDjELHJAlIaUUpRoFUuVaBZHQKxy1hn8Koh1fZQoaAZoCWgPQwiJ1LSL6VlxQJSGlFKUaBVLp2gWR0CsczoQFs55dX2UKGgGaAloD0MI/YhfsQYbZ0CUhpRSlGgVTegDaBZHQKxzaISlFc91fZQoaAZoCWgPQwib/1cduZ1zQJSGlFKUaBVL0mgWR0Csc3sOf/WEdX2UKGgGaAloD0MIPWU1XY8zcUCUhpRSlGgVS6poFkdArHO3qJMxoXV9lChoBmgJaA9DCMUbmUe+lHJAlIaUUpRoFUuxaBZHQKxzz1Iy0rt1fZQoaAZoCWgPQwg0go3rH1FxQJSGlFKUaBVLrmgWR0Csc9ENFz+4dX2UKGgGaAloD0MIWaX0TO/9cECUhpRSlGgVS49oFkdArHPorFwT/XV9lChoBmgJaA9DCHqlLEOcsHFAlIaUUpRoFUupaBZHQKx0DDgqEvl1fZQoaAZoCWgPQwiOdXEbDRNwQJSGlFKUaBVLoGgWR0CsdBwaBI4EdX2UKGgGaAloD0MIED//Pbi0c0CUhpRSlGgVS6poFkdArHSFbor4FnV9lChoBmgJaA9DCNLI5xUPZ3NAlIaUUpRoFUvZaBZHQKx0jYbKifx1fZQoaAZoCWgPQwhM/bypiGlyQJSGlFKUaBVLsmgWR0CsdJm7rcCYdX2UKGgGaAloD0MIPbmmQKYMcUCUhpRSlGgVS8NoFkdArHTERBeHBXV9lChoBmgJaA9DCJOP3QWK8XBAlIaUUpRoFUuwaBZHQKx05S2H+Id1fZQoaAZoCWgPQwiiQnVzseNzQJSGlFKUaBVL12gWR0CsdRUQkHD8dX2UKGgGaAloD0MI7N6KxETmckCUhpRSlGgVS6JoFkdArHUZWT5ft3V9lChoBmgJaA9DCI7NjlRfRXNAlIaUUpRoFUvfaBZHQKx1Jeu3c591fZQoaAZoCWgPQwgEyqZcIa5xQJSGlFKUaBVLm2gWR0CsdSofSx7idX2UKGgGaAloD0MIZAPpYtOERkCUhpRSlGgVS1ZoFkdArHVwEfT1CnV9lChoBmgJaA9DCMd/gSBA4G9AlIaUUpRoFUuUaBZHQKx1chIvrW11fZQoaAZoCWgPQwgR4PQu3iRyQJSGlFKUaBVLnmgWR0CsdXSHEdeZdX2UKGgGaAloD0MI0CnIz8aAckCUhpRSlGgVS5BoFkdArHWtAu7HyXV9lChoBmgJaA9DCMJoVrbPyXFAlIaUUpRoFUuuaBZHQKx1s+V1Oj91fZQoaAZoCWgPQwgmxFxSNZh0QJSGlFKUaBVL1WgWR0CsdchX8wYcdX2UKGgGaAloD0MIRu1+FaD/c0CUhpRSlGgVS7BoFkdArHXSPluFYnV9lChoBmgJaA9DCEEQIEMHTXNAlIaUUpRoFUvAaBZHQKx2HQ3PzFx1fZQoaAZoCWgPQwhcH9YbdfFyQJSGlFKUaBVLuGgWR0CsdnUm+j/NdX2UKGgGaAloD0MI0At3LowRcECUhpRSlGgVS7ZoFkdArHaCe05U+HV9lChoBmgJaA9DCMwJ2uSw2XJAlIaUUpRoFUuyaBZHQKx2pLA57w91fZQoaAZoCWgPQwi5UzpY/3RxQJSGlFKUaBVLmWgWR0CsdrPUaybAdX2UKGgGaAloD0MIkfKTat84ckCUhpRSlGgVS7loFkdArHbeL9/BnHV9lChoBmgJaA9DCMMQOX09cHJAlIaUUpRoFUulaBZHQKx25ua4MF51fZQoaAZoCWgPQwi0WmCPSWFxQJSGlFKUaBVLjGgWR0CsdvscZLqVdX2UKGgGaAloD0MIfVwbKoZJdECUhpRSlGgVS7toFkdArHcP3FkxynV9lChoBmgJaA9DCNS5opQQV3NAlIaUUpRoFUu/aBZHQKx3Km1pj+d1fZQoaAZoCWgPQwhVMgBUsZ1xQJSGlFKUaBVLsWgWR0Csd1AmZ3LWdX2UKGgGaAloD0MI+FJ40OxuckCUhpRSlGgVS7ZoFkdArHdc0cfeUXV9lChoBmgJaA9DCNYdi22Si3NAlIaUUpRoFUugaBZHQKx3YPSUkfN1fZQoaAZoCWgPQwhU/UrnA41yQJSGlFKUaBVLmmgWR0Csd2pobn5jdX2UKGgGaAloD0MItoR80HNvc0CUhpRSlGgVS59oFkdArHd/IbOu73V9lChoBmgJaA9DCIwTX+1odXNAlIaUUpRoFUvFaBZHQKx3wtg8bJh1fZQoaAZoCWgPQwjvWGyTylVyQJSGlFKUaBVLj2gWR0Csd/Xm3fALdX2UKGgGaAloD0MIs874vrg9c0CUhpRSlGgVS7hoFkdArHgK6jFhonV9lChoBmgJaA9DCPBt+rNf0HBAlIaUUpRoFUucaBZHQKx4Dk1/DtR1fZQoaAZoCWgPQwgOhjqssDBxQJSGlFKUaBVLnmgWR0CseFSCe2/jdX2UKGgGaAloD0MIGlOwxllxckCUhpRSlGgVS8xoFkdArHjWHBUJfXV9lChoBmgJaA9DCNgtAmP94XJAlIaUUpRoFUu5aBZHQKx41lxOtXB1fZQoaAZoCWgPQwiY3CiyVvtxQJSGlFKUaBVLvGgWR0CseOei8FpxdX2UKGgGaAloD0MITnrf+Bo5cUCUhpRSlGgVS45oFkdArHjuiUPhAHV9lChoBmgJaA9DCKqaIOp+vnJAlIaUUpRoFUulaBZHQKx49K5kK/p1fZQoaAZoCWgPQwh3nnjO1ldyQJSGlFKUaBVLtGgWR0CseQBl18sudX2UKGgGaAloD0MI1LmilJDqcUCUhpRSlGgVS5toFkdArHkIEIPbwnV9lChoBmgJaA9DCOXTY1tGCXNAlIaUUpRoFUvEaBZHQKx5E9oN/fB1fZQoaAZoCWgPQwj0iTxJugFxQJSGlFKUaBVLsWgWR0CseYFDWsijdX2UKGgGaAloD0MIttYXCW0qdECUhpRSlGgVS8loFkdArHmpw2l2vHV9lChoBmgJaA9DCAsOL4hIgXRAlIaUUpRoFUvSaBZHQKx5tpudf9h1fZQoaAZoCWgPQwimKQKc3gRyQJSGlFKUaBVLuGgWR0CsedrP+n63dX2UKGgGaAloD0MIenHiqx1bcUCUhpRSlGgVS7doFkdArHoRbhWHUXV9lChoBmgJaA9DCO+MtioJIXJAlIaUUpRoFUu0aBZHQKx6HapxWDJ1fZQoaAZoCWgPQwhlGHeDqEBxQJSGlFKUaBVLuWgWR0CsejBH9WIXdX2UKGgGaAloD0MIiNnLttPKc0CUhpRSlGgVS6RoFkdArHo2+GoJiXV9lChoBmgJaA9DCDtVvmekR3BAlIaUUpRoFUuTaBZHQKx6i8YAKfF1fZQoaAZoCWgPQwgVcqWexY1wQJSGlFKUaBVLnGgWR0Cseo420iQldX2UKGgGaAloD0MIHxMpzaYocECUhpRSlGgVS51oFkdArHqqRISUT3V9lChoBmgJaA9DCGtkV1qGF3JAlIaUUpRoFUuSaBZHQKx6q9ovi991fZQoaAZoCWgPQwjc9dIUQWNwQJSGlFKUaBVLqWgWR0Cseq+tr9EUdX2UKGgGaAloD0MIthFPdvO3ckCUhpRSlGgVS7VoFkdArHrYptrKvHV9lChoBmgJaA9DCF1txf4ySHJAlIaUUpRoFUuzaBZHQKx656N2ki51fZQoaAZoCWgPQwjbF9ALtw1zQJSGlFKUaBVLtmgWR0CsevYywfQsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5888, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 32, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
just_maybe.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e165038dcc02a354a4fc7f35f2de41878fc63035211e1754c6a93c7ba271530a
|
3 |
+
size 143985
|
just_maybe/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
just_maybe/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3cb8c05b90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3cb8c05c20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3cb8c05cb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3cb8c05d40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3cb8c05dd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3cb8c05e60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3cb8c05ef0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3cb8c05f80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3cb8b8c050>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3cb8b8c0e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3cb8b8c170>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3cb8c44f00>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 3014656,
|
46 |
+
"_total_timesteps": 3000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651866477.0616665,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFMuEL6T5so+ugf1PTOzOb+8Bwy+p5QcPgAAAAAAAAAAMzdWvcUzxjwaVuo9oybNvihHuTz+Hao8AAAAAAAAAACaFUg8BR3quxoIYrubzmk8poxLvRLkRj0AAIA/AACAPw0SFT79zbQ+ApY7vjkMPr9JNyI+9u4CvgAAAAAAAAAANp2TPhRMFj+5DTe+sGE7v5qvwD4dz4m+AAAAAAAAAABNV1890h2mPw3bFT5BbhS/phQ3PXohxz0AAAAAAAAAAM3J+ryoypo/vMe0vQpRSL/UZyy+S27LPAAAAAAAAAAA030cPtYNhj8T5sQ+4545v0MLlj5oDIw+AAAAAAAAAAAAC5S9ayNmP34CEb5EmWe/1dRSvrs837oAAAAAAAAAAGZHx7wgcLA/6h+kvkwIkr4U4hC8Tn8DvgAAAAAAAAAAABgVvCl4a7raYqU7Ot3BuLSgULnNtMO3AACAPwAAgD+AbDO9bPm1u3OdIj68aBc8468DveV+BT0AAIA/AACAP2a6tLut6bQ/1wQPv1r/3z1mpNE7apUBPgAAAAAAAAAAsw6TvRuntD9CPvq+AccjvmTnl70W/rC+AAAAAAAAAACmxbO9qdcTvKoHiD628qy87An9vJm1SD4AAIA/AACAP3Mojz0PyLE/AOFRPjJG5L6YGhY+2agCPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI74y2KolMcUCUhpRSlIwBbJRLsIwBdJRHQKxajYGt6ol1fZQoaAZoCWgPQwhdo+VAj0hyQJSGlFKUaBVLsmgWR0CsWp8aGYa6dX2UKGgGaAloD0MIc7nBUIfLcECUhpRSlGgVS59oFkdArFq7PjXFtXV9lChoBmgJaA9DCNBCAkbXeHFAlIaUUpRoFUuTaBZHQKxa0MwUQCl1fZQoaAZoCWgPQwhbtABtq05zQJSGlFKUaBVL+2gWR0CsWupYLb5/dX2UKGgGaAloD0MIRx0dV+OHcUCUhpRSlGgVS6loFkdArFsErbxmTXV9lChoBmgJaA9DCFIoC1+fgHNAlIaUUpRoFUvBaBZHQKxvmbZOBUd1fZQoaAZoCWgPQwh3EDtT6E1xQJSGlFKUaBVLr2gWR0Csb+b5VOsUdX2UKGgGaAloD0MINGjon6BMckCUhpRSlGgVS7doFkdArG/7ZFocrHV9lChoBmgJaA9DCAtFup9TbnJAlIaUUpRoFUukaBZHQKxwBsZYPoV1fZQoaAZoCWgPQwh4QURqGvpwQJSGlFKUaBVLnmgWR0CscAnied08dX2UKGgGaAloD0MIhSUeUHbAckCUhpRSlGgVS+RoFkdArHAwcPvrnnV9lChoBmgJaA9DCD2dK0qJ7nJAlIaUUpRoFUuwaBZHQKxwQYfGMn91fZQoaAZoCWgPQwjn3y779YlzQJSGlFKUaBVLt2gWR0CscEV/lQuVdX2UKGgGaAloD0MIaAQb17/tcECUhpRSlGgVS5loFkdArHC8chkiEHV9lChoBmgJaA9DCD/9Z80PN3FAlIaUUpRoFUusaBZHQKxw55u63Ap1fZQoaAZoCWgPQwhtVKcD2QpxQJSGlFKUaBVLqGgWR0CscQVKf4ATdX2UKGgGaAloD0MIXwmkxO6Vc0CUhpRSlGgVS8VoFkdArHEvr6ciGHV9lChoBmgJaA9DCJbqAl5mMHNAlIaUUpRoFUvWaBZHQKxxr8eCCjF1fZQoaAZoCWgPQwhTPZl/dNhwQJSGlFKUaBVLqWgWR0CscbTzundgdX2UKGgGaAloD0MIhjyCG6mHckCUhpRSlGgVS9NoFkdArHHA93bEgnV9lChoBmgJaA9DCGmrksj+LHNAlIaUUpRoFUufaBZHQKxx+aESM991fZQoaAZoCWgPQwhDxTh/U4ZxQJSGlFKUaBVLqGgWR0CschIwM6RydX2UKGgGaAloD0MIem8MAYBbckCUhpRSlGgVS7loFkdArHI+IInjQ3V9lChoBmgJaA9DCH/1uG+1hnJAlIaUUpRoFUv0aBZHQKxyQyyD7Il1fZQoaAZoCWgPQwiV0jO9hPVxQJSGlFKUaBVLt2gWR0Cscn2WY4Q0dX2UKGgGaAloD0MIJ/kRvyLfc0CUhpRSlGgVS9RoFkdArHKBtm+TNnV9lChoBmgJaA9DCElJD0OrB3JAlIaUUpRoFUuQaBZHQKxyheN1hb51fZQoaAZoCWgPQwhC6Qsh5z1yQJSGlFKUaBVLv2gWR0CscpN/nW8RdX2UKGgGaAloD0MIc4Bgjl6LckCUhpRSlGgVS8ZoFkdArHKZwMpgC3V9lChoBmgJaA9DCAqFCDjELHJAlIaUUpRoFUuVaBZHQKxy1hn8Koh1fZQoaAZoCWgPQwiJ1LSL6VlxQJSGlFKUaBVLp2gWR0CsczoQFs55dX2UKGgGaAloD0MI/YhfsQYbZ0CUhpRSlGgVTegDaBZHQKxzaISlFc91fZQoaAZoCWgPQwib/1cduZ1zQJSGlFKUaBVL0mgWR0Csc3sOf/WEdX2UKGgGaAloD0MIPWU1XY8zcUCUhpRSlGgVS6poFkdArHO3qJMxoXV9lChoBmgJaA9DCMUbmUe+lHJAlIaUUpRoFUuxaBZHQKxzz1Iy0rt1fZQoaAZoCWgPQwg0go3rH1FxQJSGlFKUaBVLrmgWR0Csc9ENFz+4dX2UKGgGaAloD0MIWaX0TO/9cECUhpRSlGgVS49oFkdArHPorFwT/XV9lChoBmgJaA9DCHqlLEOcsHFAlIaUUpRoFUupaBZHQKx0DDgqEvl1fZQoaAZoCWgPQwiOdXEbDRNwQJSGlFKUaBVLoGgWR0CsdBwaBI4EdX2UKGgGaAloD0MIED//Pbi0c0CUhpRSlGgVS6poFkdArHSFbor4FnV9lChoBmgJaA9DCNLI5xUPZ3NAlIaUUpRoFUvZaBZHQKx0jYbKifx1fZQoaAZoCWgPQwhM/bypiGlyQJSGlFKUaBVLsmgWR0CsdJm7rcCYdX2UKGgGaAloD0MIPbmmQKYMcUCUhpRSlGgVS8NoFkdArHTERBeHBXV9lChoBmgJaA9DCJOP3QWK8XBAlIaUUpRoFUuwaBZHQKx05S2H+Id1fZQoaAZoCWgPQwiiQnVzseNzQJSGlFKUaBVL12gWR0CsdRUQkHD8dX2UKGgGaAloD0MI7N6KxETmckCUhpRSlGgVS6JoFkdArHUZWT5ft3V9lChoBmgJaA9DCI7NjlRfRXNAlIaUUpRoFUvfaBZHQKx1Jeu3c591fZQoaAZoCWgPQwgEyqZcIa5xQJSGlFKUaBVLm2gWR0CsdSofSx7idX2UKGgGaAloD0MIZAPpYtOERkCUhpRSlGgVS1ZoFkdArHVwEfT1CnV9lChoBmgJaA9DCMd/gSBA4G9AlIaUUpRoFUuUaBZHQKx1chIvrW11fZQoaAZoCWgPQwgR4PQu3iRyQJSGlFKUaBVLnmgWR0CsdXSHEdeZdX2UKGgGaAloD0MI0CnIz8aAckCUhpRSlGgVS5BoFkdArHWtAu7HyXV9lChoBmgJaA9DCMJoVrbPyXFAlIaUUpRoFUuuaBZHQKx1s+V1Oj91fZQoaAZoCWgPQwgmxFxSNZh0QJSGlFKUaBVL1WgWR0CsdchX8wYcdX2UKGgGaAloD0MIRu1+FaD/c0CUhpRSlGgVS7BoFkdArHXSPluFYnV9lChoBmgJaA9DCEEQIEMHTXNAlIaUUpRoFUvAaBZHQKx2HQ3PzFx1fZQoaAZoCWgPQwhcH9YbdfFyQJSGlFKUaBVLuGgWR0CsdnUm+j/NdX2UKGgGaAloD0MI0At3LowRcECUhpRSlGgVS7ZoFkdArHaCe05U+HV9lChoBmgJaA9DCMwJ2uSw2XJAlIaUUpRoFUuyaBZHQKx2pLA57w91fZQoaAZoCWgPQwi5UzpY/3RxQJSGlFKUaBVLmWgWR0CsdrPUaybAdX2UKGgGaAloD0MIkfKTat84ckCUhpRSlGgVS7loFkdArHbeL9/BnHV9lChoBmgJaA9DCMMQOX09cHJAlIaUUpRoFUulaBZHQKx25ua4MF51fZQoaAZoCWgPQwi0WmCPSWFxQJSGlFKUaBVLjGgWR0CsdvscZLqVdX2UKGgGaAloD0MIfVwbKoZJdECUhpRSlGgVS7toFkdArHcP3FkxynV9lChoBmgJaA9DCNS5opQQV3NAlIaUUpRoFUu/aBZHQKx3Km1pj+d1fZQoaAZoCWgPQwhVMgBUsZ1xQJSGlFKUaBVLsWgWR0Csd1AmZ3LWdX2UKGgGaAloD0MI+FJ40OxuckCUhpRSlGgVS7ZoFkdArHdc0cfeUXV9lChoBmgJaA9DCNYdi22Si3NAlIaUUpRoFUugaBZHQKx3YPSUkfN1fZQoaAZoCWgPQwhU/UrnA41yQJSGlFKUaBVLmmgWR0Csd2pobn5jdX2UKGgGaAloD0MItoR80HNvc0CUhpRSlGgVS59oFkdArHd/IbOu73V9lChoBmgJaA9DCIwTX+1odXNAlIaUUpRoFUvFaBZHQKx3wtg8bJh1fZQoaAZoCWgPQwjvWGyTylVyQJSGlFKUaBVLj2gWR0Csd/Xm3fALdX2UKGgGaAloD0MIs874vrg9c0CUhpRSlGgVS7hoFkdArHgK6jFhonV9lChoBmgJaA9DCPBt+rNf0HBAlIaUUpRoFUucaBZHQKx4Dk1/DtR1fZQoaAZoCWgPQwgOhjqssDBxQJSGlFKUaBVLnmgWR0CseFSCe2/jdX2UKGgGaAloD0MIGlOwxllxckCUhpRSlGgVS8xoFkdArHjWHBUJfXV9lChoBmgJaA9DCNgtAmP94XJAlIaUUpRoFUu5aBZHQKx41lxOtXB1fZQoaAZoCWgPQwiY3CiyVvtxQJSGlFKUaBVLvGgWR0CseOei8FpxdX2UKGgGaAloD0MITnrf+Bo5cUCUhpRSlGgVS45oFkdArHjuiUPhAHV9lChoBmgJaA9DCKqaIOp+vnJAlIaUUpRoFUulaBZHQKx49K5kK/p1fZQoaAZoCWgPQwh3nnjO1ldyQJSGlFKUaBVLtGgWR0CseQBl18sudX2UKGgGaAloD0MI1LmilJDqcUCUhpRSlGgVS5toFkdArHkIEIPbwnV9lChoBmgJaA9DCOXTY1tGCXNAlIaUUpRoFUvEaBZHQKx5E9oN/fB1fZQoaAZoCWgPQwj0iTxJugFxQJSGlFKUaBVLsWgWR0CseYFDWsijdX2UKGgGaAloD0MIttYXCW0qdECUhpRSlGgVS8loFkdArHmpw2l2vHV9lChoBmgJaA9DCAsOL4hIgXRAlIaUUpRoFUvSaBZHQKx5tpudf9h1fZQoaAZoCWgPQwimKQKc3gRyQJSGlFKUaBVLuGgWR0CsedrP+n63dX2UKGgGaAloD0MIenHiqx1bcUCUhpRSlGgVS7doFkdArHoRbhWHUXV9lChoBmgJaA9DCO+MtioJIXJAlIaUUpRoFUu0aBZHQKx6HapxWDJ1fZQoaAZoCWgPQwhlGHeDqEBxQJSGlFKUaBVLuWgWR0CsejBH9WIXdX2UKGgGaAloD0MIiNnLttPKc0CUhpRSlGgVS6RoFkdArHo2+GoJiXV9lChoBmgJaA9DCDtVvmekR3BAlIaUUpRoFUuTaBZHQKx6i8YAKfF1fZQoaAZoCWgPQwgVcqWexY1wQJSGlFKUaBVLnGgWR0Cseo420iQldX2UKGgGaAloD0MIHxMpzaYocECUhpRSlGgVS51oFkdArHqqRISUT3V9lChoBmgJaA9DCGtkV1qGF3JAlIaUUpRoFUuSaBZHQKx6q9ovi991fZQoaAZoCWgPQwjc9dIUQWNwQJSGlFKUaBVLqWgWR0Cseq+tr9EUdX2UKGgGaAloD0MIthFPdvO3ckCUhpRSlGgVS7VoFkdArHrYptrKvHV9lChoBmgJaA9DCF1txf4ySHJAlIaUUpRoFUuzaBZHQKx656N2ki51fZQoaAZoCWgPQwjbF9ALtw1zQJSGlFKUaBVLtmgWR0CsevYywfQsdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 5888,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 256,
|
86 |
+
"n_epochs": 32,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
just_maybe/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e7d923a327693ee3b9f41ed1479ef35c12b640800f9c6ebc168ac932c86aabb
|
3 |
+
size 84893
|
just_maybe/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16021665b1d6ee82b216bbfb6c1ad8adb1aeb8071e8d1ec655c8bbcf5fa22ce7
|
3 |
+
size 43201
|
just_maybe/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
just_maybe/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e719b9ba40fbb9c27e87104c5aecbc59bd55c8db1060f763c07de62481b2f9ba
|
3 |
+
size 188246
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 292.9871336814025, "std_reward": 18.454316249055577, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-14T02:15:25.801123"}
|