|
--- |
|
language: |
|
- tr |
|
thumbnail: |
|
tags: |
|
- gpt2 |
|
- turkish |
|
|
|
license: Apache 2.0 |
|
datasets: |
|
- wikipedia-turkish |
|
metrics: |
|
- perplexity |
|
- accuracy |
|
|
|
widget: |
|
- text: "Bu yazıyı bir bilgisayar yazdı. Yazarken" |
|
context: "" |
|
- text: "İnternete kolay erişim sayesinde dünya daha da küçüldü. Bunun sonucunda" |
|
context: "" |
|
|
|
--- |
|
|
|
# MyModel |
|
|
|
## Model description |
|
|
|
This is a GPT2-Small English based model finetuned and additionaly trainied with Wikipedia Articles in Turkish as of 28-10-2020 |
|
|
|
Work has been done on Pierre Guillou tutorial as on this page. |
|
(https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb) |
|
|
|
Code is converted to work with Fastai 2.X . |
|
|
|
Using Google Colab for training. |
|
|
|
Additional tutorial and source will be in https://github.com/gorkemgoknar in later stage. |
|
|
|
Current accuracy 33 % , Perplexity : 51.88 |
|
|
|
Models are available: |
|
|
|
* [gpt2-small-tuned-tr] (https://huggingface.co/gorkemgoknar/gpt2-small-turkish) |
|
|
|
## Intended uses & limitations |
|
|
|
#### How to use |
|
|
|
#### Install |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelWithLMHead |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("gorkemgoknar/gpt2-small-turkish") |
|
model = AutoModelWithLMHead.from_pretrained("gorkemgoknar/gpt2-small-turkish") |
|
|
|
# Get sequence length max of 1024 |
|
tokenizer.model_max_length=1024 |
|
|
|
model.eval() # disable dropout (or leave in train mode to finetune) |
|
|
|
``` |
|
|
|
#### Generate 1 word |
|
```python |
|
# input sequence |
|
text = "Bu yazıyı bilgisayar yazdı." |
|
inputs = tokenizer(text, return_tensors="pt") |
|
|
|
# model output |
|
outputs = model(**inputs, labels=inputs["input_ids"]) |
|
loss, logits = outputs[:2] |
|
predicted_index = torch.argmax(logits[0, -1, :]).item() |
|
predicted_text = tokenizer.decode([predicted_index]) |
|
|
|
# results |
|
print('input text:', text) |
|
print('predicted text:', predicted_text) |
|
|
|
# input text: |
|
# predicted text: |
|
|
|
``` |
|
|
|
#### Generate Full Sequence |
|
```python |
|
# input sequence |
|
text = "Bu yazıyı bilgisayar yazdı." |
|
inputs = tokenizer(text, return_tensors="pt") |
|
|
|
# model output using Top-k sampling text generation method |
|
sample_outputs = model.generate(inputs.input_ids, |
|
pad_token_id=50256, |
|
do_sample=True, |
|
max_length=50, # put the token number you want |
|
top_k=40, |
|
num_return_sequences=1) |
|
|
|
# generated sequence |
|
for i, sample_output in enumerate(sample_outputs): |
|
print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist()))) |
|
|
|
# >> Generated text |
|
# |
|
|
|
``` |
|
|
|
#### Limitations and bias |
|
|
|
The training data used for this model come from Turkish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. |
|
|
|
|
|
## Training data |
|
|
|
Wikipedia Turkish article dump as of 28-10-2020 |
|
|
|
## Training procedure |
|
|
|
|
|
## Eval results |
|
|
|
| epoch |train_loss |valid_loss |accuracy |perplexity |time | |
|
| ----- | -------- |--------- | ---------- | --------- | ----- | |
|
|0 |4.777015 |4.621834 |0.292547 |101.680367 |2:42:05| |
|
|1 |4.509412 |4.403999 |0.305574 |81.777267 |1:09:38| |
|
|2 |4.169529 |4.120755 |0.324908 |61.605747 |1:07:45| |
|
|3 |4.293973 |4.177899 |0.317211 |65.228653 |1:07:02| |
|
|4 |4.049848 |3.949103 |0.338347 |51.888783 |1:05:53| |
|
|
|
#Epoch 0 on Tesla T4, others on V100 |
|
|
|
``` |
|
|
|
|