gpt2-small-turkish / README.md
gorkemgoknar's picture
Update README.md
71313bd
|
raw
history blame
3.4 kB
---
language:
- tr
thumbnail:
tags:
- gpt2
- turkish
license: Apache 2.0
datasets:
- wikipedia-turkish
metrics:
- perplexity
- accuracy
widget:
- text: "Bu yazıyı bir bilgisayar yazdı. Yazarken"
context: ""
- text: "İnternete kolay erişim sayesinde dünya daha da küçüldü. Bunun sonucunda"
context: ""
---
# MyModel
## Model description
This is a GPT2-Small English based model finetuned and additionaly trainied with Wikipedia Articles in Turkish as of 28-10-2020
Work has been done on Pierre Guillou tutorial as on this page.
(https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb)
Code is converted to work with Fastai 2.X .
Using Google Colab for training.
Additional tutorial and source will be in https://github.com/gorkemgoknar in later stage.
Current accuracy 33 % , Perplexity : 51.88
Models are available:
* [gpt2-small-tuned-tr] (https://huggingface.co/gorkemgoknar/gpt2-small-turkish)
## Intended uses & limitations
#### How to use
#### Install
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
import torch
tokenizer = AutoTokenizer.from_pretrained("gorkemgoknar/gpt2-small-turkish")
model = AutoModelWithLMHead.from_pretrained("gorkemgoknar/gpt2-small-turkish")
# Get sequence length max of 1024
tokenizer.model_max_length=1024
model.eval() # disable dropout (or leave in train mode to finetune)
```
#### Generate 1 word
```python
# input sequence
text = "Bu yazıyı bilgisayar yazdı."
inputs = tokenizer(text, return_tensors="pt")
# model output
outputs = model(**inputs, labels=inputs["input_ids"])
loss, logits = outputs[:2]
predicted_index = torch.argmax(logits[0, -1, :]).item()
predicted_text = tokenizer.decode([predicted_index])
# results
print('input text:', text)
print('predicted text:', predicted_text)
# input text:
# predicted text:
```
#### Generate Full Sequence
```python
# input sequence
text = "Bu yazıyı bilgisayar yazdı."
inputs = tokenizer(text, return_tensors="pt")
# model output using Top-k sampling text generation method
sample_outputs = model.generate(inputs.input_ids,
pad_token_id=50256,
do_sample=True,
max_length=50, # put the token number you want
top_k=40,
num_return_sequences=1)
# generated sequence
for i, sample_output in enumerate(sample_outputs):
print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist())))
# >> Generated text
#
```
#### Limitations and bias
The training data used for this model come from Turkish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral.
## Training data
Wikipedia Turkish article dump as of 28-10-2020
## Training procedure
## Eval results
| epoch |train_loss |valid_loss |accuracy |perplexity |time |
| ----- | -------- |--------- | ---------- | --------- | ----- |
|0 |4.777015 |4.621834 |0.292547 |101.680367 |2:42:05|
|1 |4.509412 |4.403999 |0.305574 |81.777267 |1:09:38|
|2 |4.169529 |4.120755 |0.324908 |61.605747 |1:07:45|
|3 |4.293973 |4.177899 |0.317211 |65.228653 |1:07:02|
|4 |4.049848 |3.949103 |0.338347 |51.888783 |1:05:53|
#Epoch 0 on Tesla T4, others on V100
```