zephyr-7b-dpo-full / README.md
glimmerz's picture
Model save
0891d87
|
raw
history blame
7.49 kB
metadata
license: apache-2.0
base_model: glimmerz/zephyr-7b-sft-full
tags:
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full
    results: []

zephyr-7b-dpo-full

This model is a fine-tuned version of glimmerz/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7385
  • Rewards/chosen: -4.7566
  • Rewards/rejected: -8.6166
  • Rewards/accuracies: 0.7560
  • Rewards/margins: 3.8601
  • Logps/rejected: -315.8341
  • Logps/chosen: -321.4129
  • Logits/rejected: -2.2590
  • Logits/chosen: -2.3620

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.575 0.1 100 0.5309 -0.0101 -0.6034 0.7460 0.5933 -235.7018 -273.9487 -2.6525 -2.7458
0.4759 0.21 200 0.4943 -0.0642 -1.0829 0.75 1.0187 -240.4966 -274.4892 -2.7066 -2.8006
0.5022 0.31 300 0.4824 -0.1526 -1.2517 0.7620 1.0991 -242.1845 -275.3735 -2.7362 -2.8225
0.5282 0.41 400 0.4878 -0.6794 -1.9420 0.7840 1.2626 -249.0876 -280.6413 -2.7023 -2.7924
0.5179 0.52 500 0.4805 -0.2645 -1.4485 0.7760 1.1841 -244.1532 -276.4918 -2.6773 -2.7631
0.4705 0.62 600 0.4715 -0.3016 -1.5766 0.7560 1.2750 -245.4337 -276.8629 -2.7009 -2.7838
0.5038 0.72 700 0.4790 -0.3119 -1.5731 0.7680 1.2612 -245.3986 -276.9666 -2.5409 -2.6269
0.4418 0.83 800 0.4665 -0.4564 -2.0177 0.7800 1.5612 -249.8442 -278.4113 -2.4834 -2.5636
0.5155 0.93 900 0.4770 -0.3715 -1.7079 0.7740 1.3364 -246.7468 -277.5622 -2.5118 -2.5927
0.3463 1.03 1000 0.4755 -0.5305 -1.8263 0.7680 1.2958 -247.9306 -279.1520 -2.6282 -2.7083
0.1266 1.14 1100 0.4924 -1.0131 -2.8651 0.7740 1.8519 -258.3182 -283.9783 -2.5584 -2.6430
0.0751 1.24 1200 0.5208 -1.4508 -3.6646 0.7760 2.2138 -266.3139 -288.3549 -2.5574 -2.6450
0.0306 1.34 1300 0.5779 -2.1463 -4.7450 0.7580 2.5987 -277.1172 -295.3102 -2.4957 -2.5865
0.031 1.45 1400 0.5993 -2.6730 -5.3111 0.7580 2.6381 -282.7792 -300.5774 -2.5157 -2.6051
0.0535 1.55 1500 0.5731 -2.1627 -4.7943 0.75 2.6316 -277.6110 -295.4747 -2.5616 -2.6529
0.063 1.65 1600 0.5433 -1.9823 -4.5765 0.7580 2.5942 -275.4325 -293.6702 -2.5038 -2.5985
0.0423 1.76 1700 0.5821 -2.6553 -5.4183 0.7540 2.7630 -283.8502 -300.3999 -2.4636 -2.5654
0.0559 1.86 1800 0.5657 -2.5801 -5.2643 0.7520 2.6842 -282.3106 -299.6483 -2.4843 -2.5741
0.0468 1.96 1900 0.5759 -2.4597 -5.2907 0.7480 2.8309 -282.5742 -298.4443 -2.4491 -2.5392
0.0576 2.07 2000 0.5614 -2.5997 -5.3232 0.7620 2.7235 -282.8997 -299.8446 -2.4132 -2.5016
0.0135 2.17 2100 0.6182 -3.1988 -6.3849 0.7640 3.1861 -293.5166 -305.8354 -2.4052 -2.5040
0.0149 2.27 2200 0.7075 -4.5960 -8.1955 0.7420 3.5995 -311.6229 -319.8072 -2.3535 -2.4494
0.0095 2.37 2300 0.7117 -4.2102 -7.7788 0.7540 3.5686 -307.4559 -315.9493 -2.2943 -2.3972
0.0104 2.48 2400 0.7131 -4.3371 -7.9252 0.7540 3.5881 -308.9199 -317.2180 -2.3097 -2.4097
0.008 2.58 2500 0.7328 -4.4361 -8.1696 0.7520 3.7335 -311.3636 -318.2084 -2.2756 -2.3764
0.0051 2.68 2600 0.7193 -4.2884 -7.9892 0.7600 3.7009 -309.5601 -316.7311 -2.3138 -2.4185
0.0089 2.79 2700 0.7388 -4.8991 -8.6552 0.7660 3.7561 -316.2196 -322.8380 -2.2942 -2.3960
0.0082 2.89 2800 0.7342 -4.7984 -8.6596 0.7640 3.8612 -316.2638 -321.8309 -2.2620 -2.3649
0.0094 2.99 2900 0.7374 -4.7573 -8.6168 0.7580 3.8595 -315.8361 -321.4205 -2.2595 -2.3625

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0