girijesh's picture
Add new SentenceTransformer model
e8373a3 verified
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: The net cash provided by operating activities during fiscal 2023
was related to net income of $208 million, adjusted for non-cash items including
$3.8 billion of depreciation and amortization and $3.3 billion related to stock-based
compensation expense.
sentences:
- What are the three key aspects encompassed in a company's internal control over
financial reporting?
- What was the net cash provided by operating activities for fiscal 2023?
- What are the two operating segments of NVIDIA as mentioned in the text?
- source_sentence: Intellectual Property To establish and protect our proprietary
rights, we rely on a combination of patents, trademarks, copyrights, trade secrets,
including know-how, license agreements, confidentiality procedures, non-disclosure
agreements with third parties, employee disclosure and invention assignment agreements,
and other contractual rights.
sentences:
- What condition does Synthroid treat and what type of drug is it formulated as?
- What legal tools does the company use to protect its intellectual property?
- In which item and part of a financial document would you find information on legal
proceedings?
- source_sentence: Cost of revenues is comprised of TAC and other costs of revenues.
TAC includes amounts paid to our distribution partners and Google Network partners
primarily for ads displayed on their properties. Other cost of revenues includes
compensation expense related to our data centers and operations, content acquisition
costs, depreciation expense related to technical infrastructure, and inventory
and other costs related to devices we sell.
sentences:
- What is included in the cost of revenues for Google?
- What was the total net uncertain tax positions as of December 31, 2023?
- What portion of the restructuring charges incurred in fiscal 2023 are expected
to be settled with cash?
- source_sentence: Comprehensive income (loss) | $ | (362) | | $ | 1,868 | $ | 4,775
sentences:
- What measures does the company take to ensure product quality?
- How many pages does Item 8, which includes Financial Statements and Supplementary
Data, span?
- What was the total comprehensive income for Airbnb, Inc. in 2023?
- source_sentence: We make our branded beverage products available to consumers throughout
the world through our network of independent bottling partners, distributors,
wholesalers and retailers as well as our consolidated bottling and distribution
operations.
sentences:
- How does The Coca-Cola Company distribute its beverage products globally?
- What accounting method is predominantly used to determine inventory costs in the
Company's supermarket divisions before LIFO adjustments?
- How are the company's inventories valued?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7142857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8485714285714285
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8814285714285715
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9171428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7142857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28285714285714286
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17628571428571424
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09171428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7142857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8485714285714285
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8814285714285715
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9171428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8195547708074192
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7879784580498865
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.791495828863575
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7157142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8457142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8814285714285715
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.92
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7157142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2819047619047619
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17628571428571424
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09199999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7157142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8457142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8814285714285715
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.92
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8200080507124731
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7878299319727888
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7911645774121049
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8471428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28238095238095234
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.176
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09099999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8471428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.88
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8087696033003087
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7755997732426303
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7799208675704249
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9071428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0907142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9071428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8024684596621504
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7686116780045347
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7729258054107728
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6585714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8028571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8357142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8828571428571429
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6585714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2676190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1671428571428571
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08828571428571429
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6585714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8028571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8357142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8828571428571429
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7735846622621076
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.738378684807256
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7433829659777168
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("girijesh/bge-base-financial-matryoshka")
# Run inference
sentences = [
'We make our branded beverage products available to consumers throughout the world through our network of independent bottling partners, distributors, wholesalers and retailers as well as our consolidated bottling and distribution operations.',
'How does The Coca-Cola Company distribute its beverage products globally?',
"What accounting method is predominantly used to determine inventory costs in the Company's supermarket divisions before LIFO adjustments?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7143 |
| cosine_accuracy@3 | 0.8486 |
| cosine_accuracy@5 | 0.8814 |
| cosine_accuracy@10 | 0.9171 |
| cosine_precision@1 | 0.7143 |
| cosine_precision@3 | 0.2829 |
| cosine_precision@5 | 0.1763 |
| cosine_precision@10 | 0.0917 |
| cosine_recall@1 | 0.7143 |
| cosine_recall@3 | 0.8486 |
| cosine_recall@5 | 0.8814 |
| cosine_recall@10 | 0.9171 |
| cosine_ndcg@10 | 0.8196 |
| cosine_mrr@10 | 0.788 |
| **cosine_map@100** | **0.7915** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7157 |
| cosine_accuracy@3 | 0.8457 |
| cosine_accuracy@5 | 0.8814 |
| cosine_accuracy@10 | 0.92 |
| cosine_precision@1 | 0.7157 |
| cosine_precision@3 | 0.2819 |
| cosine_precision@5 | 0.1763 |
| cosine_precision@10 | 0.092 |
| cosine_recall@1 | 0.7157 |
| cosine_recall@3 | 0.8457 |
| cosine_recall@5 | 0.8814 |
| cosine_recall@10 | 0.92 |
| cosine_ndcg@10 | 0.82 |
| cosine_mrr@10 | 0.7878 |
| **cosine_map@100** | **0.7912** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6914 |
| cosine_accuracy@3 | 0.8471 |
| cosine_accuracy@5 | 0.88 |
| cosine_accuracy@10 | 0.91 |
| cosine_precision@1 | 0.6914 |
| cosine_precision@3 | 0.2824 |
| cosine_precision@5 | 0.176 |
| cosine_precision@10 | 0.091 |
| cosine_recall@1 | 0.6914 |
| cosine_recall@3 | 0.8471 |
| cosine_recall@5 | 0.88 |
| cosine_recall@10 | 0.91 |
| cosine_ndcg@10 | 0.8088 |
| cosine_mrr@10 | 0.7756 |
| **cosine_map@100** | **0.7799** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6914 |
| cosine_accuracy@3 | 0.83 |
| cosine_accuracy@5 | 0.87 |
| cosine_accuracy@10 | 0.9071 |
| cosine_precision@1 | 0.6914 |
| cosine_precision@3 | 0.2767 |
| cosine_precision@5 | 0.174 |
| cosine_precision@10 | 0.0907 |
| cosine_recall@1 | 0.6914 |
| cosine_recall@3 | 0.83 |
| cosine_recall@5 | 0.87 |
| cosine_recall@10 | 0.9071 |
| cosine_ndcg@10 | 0.8025 |
| cosine_mrr@10 | 0.7686 |
| **cosine_map@100** | **0.7729** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6586 |
| cosine_accuracy@3 | 0.8029 |
| cosine_accuracy@5 | 0.8357 |
| cosine_accuracy@10 | 0.8829 |
| cosine_precision@1 | 0.6586 |
| cosine_precision@3 | 0.2676 |
| cosine_precision@5 | 0.1671 |
| cosine_precision@10 | 0.0883 |
| cosine_recall@1 | 0.6586 |
| cosine_recall@3 | 0.8029 |
| cosine_recall@5 | 0.8357 |
| cosine_recall@10 | 0.8829 |
| cosine_ndcg@10 | 0.7736 |
| cosine_mrr@10 | 0.7384 |
| **cosine_map@100** | **0.7434** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 44.98 tokens</li><li>max: 439 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.31 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------|
| <code>Change in control events potentially triggering benefits under the CIC Plan and Mr. Begor’s agreement would occur, subject to certain exceptions, if (1) any person acquires 20% or more of our voting stock; (2) upon a merger or other business combination, our shareholders receive less than two-thirds of the common stock and combined voting power of the new company; (3) members of the current Board of Directors ceasing to constitute a majority of the Board of Directors, except for new directors that are regularly elected; (4) we sell or otherwise dispose of all or substantially all of our assets; or (5) we liquidate or dissolve.</code> | <code>What events potentially trigger benefits under Mark W. Begor's change in control agreement and the CIC Plan?</code> |
| <code>The growth in marketplace revenue was primarily due to the impact of the pricing update to increase our seller transaction fee for the Etsy marketplace from 5% to 6.5% beginning on April 11, 2022, and an increase in foreign currency payments, which we earn an additional transaction fee on, in the year ended December 31, 2023.</code> | <code>What drove the growth in marketplace revenue for the year ended December 31, 2023?</code> |
| <code>We are focused on ensuring that we efficiently allocate our resources to the areas with the highest potential for profitable growth. ... The uncertain macroeconomic environment in many of these markets is expected to continue and we aim to ensure our investments in these international markets are appropriate relative to the size of the opportunity.</code> | <code>What are Hershey's goals for international expansion and how are they being approached?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.9697 | 6 | - | 0.7527 | 0.7516 | 0.7454 | 0.7253 | 0.6808 |
| 1.6162 | 10 | 2.3351 | - | - | - | - | - |
| 1.9394 | 12 | - | 0.7740 | 0.7699 | 0.7707 | 0.7474 | 0.7188 |
| 2.9091 | 18 | - | 0.7784 | 0.7790 | 0.7735 | 0.7575 | 0.7275 |
| 3.2323 | 20 | 1.0519 | - | - | - | - | - |
| **3.8788** | **24** | **-** | **0.7818** | **0.7784** | **0.7763** | **0.7581** | **0.7293** |
| 0.9697 | 6 | - | 0.7836 | 0.7826 | 0.7817 | 0.7664 | 0.7353 |
| 1.6162 | 10 | 0.8132 | - | - | - | - | - |
| 1.9394 | 12 | - | 0.7887 | 0.7887 | 0.7837 | 0.7714 | 0.7409 |
| 2.9091 | 18 | - | 0.7897 | 0.7902 | 0.7798 | 0.7721 | 0.7410 |
| 3.2323 | 20 | 0.6098 | - | - | - | - | - |
| **3.8788** | **24** | **-** | **0.7915** | **0.7912** | **0.7799** | **0.7729** | **0.7434** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.0.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->