ASAP_FineTuningBERT_UnAugV5_k1_task1_organization_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6550
  • Qwk: 0.6278
  • Mse: 0.6550
  • Rmse: 0.8094

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 2.0 2 10.5351 0.0061 10.5351 3.2458
No log 4.0 4 8.2198 0.0054 8.2198 2.8670
No log 6.0 6 6.3796 0.0029 6.3796 2.5258
No log 8.0 8 4.9785 0.0139 4.9785 2.2313
9.3005 10.0 10 3.7548 0.0115 3.7548 1.9377
9.3005 12.0 12 2.7153 0.0077 2.7153 1.6478
9.3005 14.0 14 1.8897 0.0520 1.8897 1.3747
9.3005 16.0 16 1.3712 0.0520 1.3712 1.1710
9.3005 18.0 18 1.0739 0.0520 1.0739 1.0363
3.4599 20.0 20 0.8739 0.0664 0.8739 0.9348
3.4599 22.0 22 0.7690 0.3702 0.7690 0.8769
3.4599 24.0 24 0.6434 0.4429 0.6434 0.8021
3.4599 26.0 26 0.6024 0.4529 0.6024 0.7761
3.4599 28.0 28 0.5723 0.4703 0.5723 0.7565
1.4411 30.0 30 0.5559 0.5397 0.5559 0.7456
1.4411 32.0 32 0.5948 0.4984 0.5948 0.7713
1.4411 34.0 34 0.5494 0.5483 0.5494 0.7412
1.4411 36.0 36 0.6670 0.5671 0.6670 0.8167
1.4411 38.0 38 0.5804 0.6215 0.5804 0.7618
0.6198 40.0 40 0.7679 0.5270 0.7679 0.8763
0.6198 42.0 42 0.6548 0.5980 0.6548 0.8092
0.6198 44.0 44 0.5776 0.6053 0.5776 0.7600
0.6198 46.0 46 1.0709 0.4333 1.0709 1.0349
0.6198 48.0 48 1.0767 0.4461 1.0767 1.0376
0.3311 50.0 50 0.6082 0.6208 0.6082 0.7799
0.3311 52.0 52 0.6632 0.6153 0.6632 0.8144
0.3311 54.0 54 0.8101 0.5604 0.8101 0.9000
0.3311 56.0 56 0.6507 0.6362 0.6507 0.8067
0.3311 58.0 58 0.7474 0.5957 0.7474 0.8645
0.1608 60.0 60 0.7510 0.5770 0.7510 0.8666
0.1608 62.0 62 0.6489 0.6265 0.6489 0.8056
0.1608 64.0 64 0.8040 0.5634 0.8040 0.8966
0.1608 66.0 66 0.6306 0.6342 0.6306 0.7941
0.1608 68.0 68 0.6491 0.6393 0.6491 0.8056
0.0968 70.0 70 0.8924 0.5310 0.8924 0.9447
0.0968 72.0 72 0.8359 0.5514 0.8359 0.9143
0.0968 74.0 74 0.6026 0.6239 0.6026 0.7763
0.0968 76.0 76 0.5893 0.6221 0.5893 0.7676
0.0968 78.0 78 0.6519 0.6201 0.6519 0.8074
0.073 80.0 80 0.9077 0.5460 0.9077 0.9527
0.073 82.0 82 0.9019 0.5462 0.9019 0.9497
0.073 84.0 84 0.7039 0.6093 0.7039 0.8390
0.073 86.0 86 0.6333 0.6300 0.6333 0.7958
0.073 88.0 88 0.6698 0.6237 0.6698 0.8184
0.0569 90.0 90 0.7536 0.5817 0.7536 0.8681
0.0569 92.0 92 0.8272 0.5526 0.8272 0.9095
0.0569 94.0 94 0.7834 0.5585 0.7834 0.8851
0.0569 96.0 96 0.7058 0.6116 0.7058 0.8401
0.0569 98.0 98 0.6605 0.6294 0.6605 0.8127
0.0526 100.0 100 0.6550 0.6278 0.6550 0.8094

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_UnAugV5_k1_task1_organization_fold0

Finetuned
(2422)
this model