ASAP_FineTuningBERT_AugV8_k2_task1_organization_k2_fold2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7416
- Qwk: 0.4922
- Mse: 0.7414
- Rmse: 0.8611
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 10.3400 | 0.0004 | 10.3400 | 3.2156 |
No log | 2.0 | 4 | 7.1380 | 0.0 | 7.1384 | 2.6718 |
No log | 3.0 | 6 | 4.9739 | 0.0127 | 4.9744 | 2.2303 |
No log | 4.0 | 8 | 3.7366 | 0.0 | 3.7370 | 1.9331 |
No log | 5.0 | 10 | 2.8549 | 0.0 | 2.8553 | 1.6898 |
No log | 6.0 | 12 | 2.4771 | -0.0162 | 2.4775 | 1.5740 |
No log | 7.0 | 14 | 1.5486 | 0.0107 | 1.5490 | 1.2446 |
No log | 8.0 | 16 | 2.0528 | 0.0511 | 2.0530 | 1.4328 |
No log | 9.0 | 18 | 1.1497 | 0.0 | 1.1500 | 1.0724 |
No log | 10.0 | 20 | 1.0578 | 0.0 | 1.0583 | 1.0287 |
No log | 11.0 | 22 | 1.1125 | 0.0 | 1.1130 | 1.0550 |
No log | 12.0 | 24 | 1.1155 | 0.0136 | 1.1159 | 1.0564 |
No log | 13.0 | 26 | 1.3284 | 0.0897 | 1.3288 | 1.1527 |
No log | 14.0 | 28 | 1.2362 | 0.1292 | 1.2365 | 1.1120 |
No log | 15.0 | 30 | 0.9294 | 0.2427 | 0.9296 | 0.9642 |
No log | 16.0 | 32 | 0.8378 | 0.4047 | 0.8380 | 0.9154 |
No log | 17.0 | 34 | 1.0062 | 0.2982 | 1.0064 | 1.0032 |
No log | 18.0 | 36 | 0.9553 | 0.3507 | 0.9556 | 0.9775 |
No log | 19.0 | 38 | 0.6189 | 0.5138 | 0.6189 | 0.7867 |
No log | 20.0 | 40 | 0.5981 | 0.4394 | 0.5981 | 0.7734 |
No log | 21.0 | 42 | 0.6043 | 0.4791 | 0.6045 | 0.7775 |
No log | 22.0 | 44 | 0.5920 | 0.4736 | 0.5922 | 0.7695 |
No log | 23.0 | 46 | 0.6177 | 0.4149 | 0.6179 | 0.7861 |
No log | 24.0 | 48 | 0.6335 | 0.3777 | 0.6337 | 0.7961 |
No log | 25.0 | 50 | 0.6151 | 0.3935 | 0.6152 | 0.7844 |
No log | 26.0 | 52 | 0.6505 | 0.4043 | 0.6505 | 0.8065 |
No log | 27.0 | 54 | 0.7290 | 0.3489 | 0.7290 | 0.8538 |
No log | 28.0 | 56 | 0.6644 | 0.4271 | 0.6643 | 0.8151 |
No log | 29.0 | 58 | 0.5694 | 0.5605 | 0.5694 | 0.7546 |
No log | 30.0 | 60 | 0.6181 | 0.5514 | 0.6180 | 0.7861 |
No log | 31.0 | 62 | 0.7857 | 0.3964 | 0.7855 | 0.8863 |
No log | 32.0 | 64 | 0.7133 | 0.4335 | 0.7131 | 0.8445 |
No log | 33.0 | 66 | 0.6362 | 0.5360 | 0.6362 | 0.7976 |
No log | 34.0 | 68 | 0.7403 | 0.5154 | 0.7401 | 0.8603 |
No log | 35.0 | 70 | 0.7334 | 0.5308 | 0.7332 | 0.8563 |
No log | 36.0 | 72 | 0.6273 | 0.5713 | 0.6273 | 0.7920 |
No log | 37.0 | 74 | 0.7286 | 0.5182 | 0.7285 | 0.8535 |
No log | 38.0 | 76 | 0.9513 | 0.4302 | 0.9509 | 0.9752 |
No log | 39.0 | 78 | 0.8116 | 0.4678 | 0.8114 | 0.9008 |
No log | 40.0 | 80 | 0.6281 | 0.5375 | 0.6282 | 0.7926 |
No log | 41.0 | 82 | 0.7424 | 0.4658 | 0.7424 | 0.8616 |
No log | 42.0 | 84 | 0.9882 | 0.4166 | 0.9878 | 0.9939 |
No log | 43.0 | 86 | 0.7104 | 0.4837 | 0.7103 | 0.8428 |
No log | 44.0 | 88 | 0.7206 | 0.4959 | 0.7204 | 0.8488 |
No log | 45.0 | 90 | 0.9736 | 0.4240 | 0.9732 | 0.9865 |
No log | 46.0 | 92 | 0.7416 | 0.4922 | 0.7414 | 0.8611 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for genki10/ASAP_FineTuningBERT_AugV8_k2_task1_organization_k2_fold2
Base model
google-bert/bert-base-uncased