ASAP_FineTuningBERT_AugV8_k2_task1_organization_k2_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7416
  • Qwk: 0.4922
  • Mse: 0.7414
  • Rmse: 0.8611

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 10.3400 0.0004 10.3400 3.2156
No log 2.0 4 7.1380 0.0 7.1384 2.6718
No log 3.0 6 4.9739 0.0127 4.9744 2.2303
No log 4.0 8 3.7366 0.0 3.7370 1.9331
No log 5.0 10 2.8549 0.0 2.8553 1.6898
No log 6.0 12 2.4771 -0.0162 2.4775 1.5740
No log 7.0 14 1.5486 0.0107 1.5490 1.2446
No log 8.0 16 2.0528 0.0511 2.0530 1.4328
No log 9.0 18 1.1497 0.0 1.1500 1.0724
No log 10.0 20 1.0578 0.0 1.0583 1.0287
No log 11.0 22 1.1125 0.0 1.1130 1.0550
No log 12.0 24 1.1155 0.0136 1.1159 1.0564
No log 13.0 26 1.3284 0.0897 1.3288 1.1527
No log 14.0 28 1.2362 0.1292 1.2365 1.1120
No log 15.0 30 0.9294 0.2427 0.9296 0.9642
No log 16.0 32 0.8378 0.4047 0.8380 0.9154
No log 17.0 34 1.0062 0.2982 1.0064 1.0032
No log 18.0 36 0.9553 0.3507 0.9556 0.9775
No log 19.0 38 0.6189 0.5138 0.6189 0.7867
No log 20.0 40 0.5981 0.4394 0.5981 0.7734
No log 21.0 42 0.6043 0.4791 0.6045 0.7775
No log 22.0 44 0.5920 0.4736 0.5922 0.7695
No log 23.0 46 0.6177 0.4149 0.6179 0.7861
No log 24.0 48 0.6335 0.3777 0.6337 0.7961
No log 25.0 50 0.6151 0.3935 0.6152 0.7844
No log 26.0 52 0.6505 0.4043 0.6505 0.8065
No log 27.0 54 0.7290 0.3489 0.7290 0.8538
No log 28.0 56 0.6644 0.4271 0.6643 0.8151
No log 29.0 58 0.5694 0.5605 0.5694 0.7546
No log 30.0 60 0.6181 0.5514 0.6180 0.7861
No log 31.0 62 0.7857 0.3964 0.7855 0.8863
No log 32.0 64 0.7133 0.4335 0.7131 0.8445
No log 33.0 66 0.6362 0.5360 0.6362 0.7976
No log 34.0 68 0.7403 0.5154 0.7401 0.8603
No log 35.0 70 0.7334 0.5308 0.7332 0.8563
No log 36.0 72 0.6273 0.5713 0.6273 0.7920
No log 37.0 74 0.7286 0.5182 0.7285 0.8535
No log 38.0 76 0.9513 0.4302 0.9509 0.9752
No log 39.0 78 0.8116 0.4678 0.8114 0.9008
No log 40.0 80 0.6281 0.5375 0.6282 0.7926
No log 41.0 82 0.7424 0.4658 0.7424 0.8616
No log 42.0 84 0.9882 0.4166 0.9878 0.9939
No log 43.0 86 0.7104 0.4837 0.7103 0.8428
No log 44.0 88 0.7206 0.4959 0.7204 0.8488
No log 45.0 90 0.9736 0.4240 0.9732 0.9865
No log 46.0 92 0.7416 0.4922 0.7414 0.8611

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for genki10/ASAP_FineTuningBERT_AugV8_k2_task1_organization_k2_fold2

Finetuned
(2655)
this model