ASAP_FineTuningBERT_AugV6_k3_task1_organization_k3_k3_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9276
  • Qwk: 0.4192
  • Mse: 0.9276
  • Rmse: 0.9631

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 3 12.1180 0.0098 12.1180 3.4811
No log 2.0 6 7.8344 0.0 7.8344 2.7990
No log 3.0 9 4.9662 0.0241 4.9662 2.2285
No log 4.0 12 3.0220 0.0077 3.0220 1.7384
No log 5.0 15 1.8533 0.0748 1.8533 1.3614
No log 6.0 18 1.3394 0.0612 1.3394 1.1573
No log 7.0 21 1.0964 0.0316 1.0964 1.0471
No log 8.0 24 1.3255 0.0583 1.3255 1.1513
No log 9.0 27 0.8987 0.1892 0.8987 0.9480
No log 10.0 30 0.9200 0.2404 0.9200 0.9592
No log 11.0 33 0.9291 0.3359 0.9291 0.9639
No log 12.0 36 0.7327 0.4496 0.7327 0.8560
No log 13.0 39 0.6272 0.4167 0.6272 0.7920
No log 14.0 42 0.6574 0.4074 0.6574 0.8108
No log 15.0 45 0.5988 0.4090 0.5988 0.7738
No log 16.0 48 0.6758 0.4061 0.6758 0.8220
No log 17.0 51 0.6867 0.4232 0.6867 0.8287
No log 18.0 54 0.8726 0.3507 0.8726 0.9341
No log 19.0 57 0.8223 0.3507 0.8223 0.9068
No log 20.0 60 1.0142 0.3820 1.0142 1.0071
No log 21.0 63 0.7111 0.4906 0.7111 0.8433
No log 22.0 66 0.7631 0.4780 0.7631 0.8736
No log 23.0 69 0.7897 0.4561 0.7897 0.8886
No log 24.0 72 0.8612 0.4382 0.8612 0.9280
No log 25.0 75 0.9182 0.4264 0.9182 0.9582
No log 26.0 78 0.8725 0.4650 0.8725 0.9341
No log 27.0 81 0.8638 0.4366 0.8638 0.9294
No log 28.0 84 0.9675 0.4160 0.9675 0.9836
No log 29.0 87 0.8886 0.4346 0.8886 0.9427
No log 30.0 90 1.0147 0.4137 1.0147 1.0073
No log 31.0 93 0.9390 0.4338 0.9390 0.9690
No log 32.0 96 0.9068 0.4269 0.9068 0.9523
No log 33.0 99 0.9030 0.4547 0.9030 0.9503
No log 34.0 102 0.8759 0.4700 0.8759 0.9359
No log 35.0 105 0.9140 0.4522 0.9140 0.9560
No log 36.0 108 0.9439 0.4284 0.9439 0.9716
No log 37.0 111 0.9039 0.4366 0.9039 0.9507
No log 38.0 114 0.8794 0.4491 0.8794 0.9378
No log 39.0 117 0.8645 0.4476 0.8645 0.9298
No log 40.0 120 0.8858 0.4431 0.8858 0.9411
No log 41.0 123 0.9276 0.4192 0.9276 0.9631

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for genki10/ASAP_FineTuningBERT_AugV6_k3_task1_organization_k3_k3_fold0

Finetuned
(2658)
this model