ASAP_FineTuningBERT_AugV6_k1_task1_organization_k1_k1_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8680
  • Qwk: 0.4949
  • Mse: 0.8680
  • Rmse: 0.9316

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 12.8890 -0.0011 12.8890 3.5901
No log 2.0 4 9.9472 0.0018 9.9472 3.1539
No log 3.0 6 8.7139 0.0 8.7139 2.9519
No log 4.0 8 7.3810 0.0 7.3810 2.7168
No log 5.0 10 5.7643 0.0065 5.7643 2.4009
No log 6.0 12 4.3938 0.0079 4.3938 2.0961
No log 7.0 14 3.2416 0.0040 3.2416 1.8004
No log 8.0 16 2.4935 0.0230 2.4935 1.5791
No log 9.0 18 2.0364 0.0747 2.0364 1.4270
No log 10.0 20 1.6875 0.0518 1.6875 1.2990
No log 11.0 22 1.4080 0.0533 1.4080 1.1866
No log 12.0 24 1.0618 0.0316 1.0618 1.0304
No log 13.0 26 0.9812 0.0316 0.9812 0.9906
No log 14.0 28 1.0974 0.0316 1.0974 1.0475
No log 15.0 30 1.3938 0.0850 1.3938 1.1806
No log 16.0 32 1.2501 0.1064 1.2501 1.1181
No log 17.0 34 1.0616 0.1777 1.0616 1.0303
No log 18.0 36 1.1793 0.2216 1.1793 1.0859
No log 19.0 38 1.0778 0.3308 1.0778 1.0382
No log 20.0 40 1.1801 0.3898 1.1801 1.0863
No log 21.0 42 1.9151 0.2538 1.9151 1.3839
No log 22.0 44 1.5416 0.3298 1.5416 1.2416
No log 23.0 46 1.4745 0.3378 1.4745 1.2143
No log 24.0 48 0.8477 0.4446 0.8477 0.9207
No log 25.0 50 0.7671 0.4725 0.7671 0.8758
No log 26.0 52 1.3353 0.3428 1.3353 1.1556
No log 27.0 54 1.4812 0.3132 1.4812 1.2170
No log 28.0 56 0.9152 0.4389 0.9152 0.9567
No log 29.0 58 0.7235 0.5094 0.7235 0.8506
No log 30.0 60 0.7219 0.4935 0.7219 0.8497
No log 31.0 62 1.1388 0.3762 1.1388 1.0672
No log 32.0 64 1.0083 0.4257 1.0083 1.0041
No log 33.0 66 0.7755 0.4911 0.7755 0.8806
No log 34.0 68 0.8231 0.4779 0.8231 0.9073
No log 35.0 70 0.9423 0.4742 0.9423 0.9707
No log 36.0 72 0.9206 0.4719 0.9206 0.9595
No log 37.0 74 0.8846 0.4651 0.8846 0.9405
No log 38.0 76 0.9781 0.4241 0.9781 0.9890
No log 39.0 78 1.1599 0.4229 1.1599 1.0770
No log 40.0 80 0.9518 0.4437 0.9518 0.9756
No log 41.0 82 0.8629 0.4652 0.8629 0.9289
No log 42.0 84 0.8836 0.4625 0.8836 0.9400
No log 43.0 86 1.1953 0.4134 1.1953 1.0933
No log 44.0 88 0.9837 0.4446 0.9837 0.9918
No log 45.0 90 0.9300 0.4697 0.9300 0.9643
No log 46.0 92 1.0302 0.4278 1.0302 1.0150
No log 47.0 94 1.1905 0.4037 1.1905 1.0911
No log 48.0 96 0.9827 0.4597 0.9827 0.9913
No log 49.0 98 0.8680 0.4949 0.8680 0.9316

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for genki10/ASAP_FineTuningBERT_AugV6_k1_task1_organization_k1_k1_fold4

Finetuned
(2658)
this model