ASAP_FineTuningBERT_AugV6_k1_task1_organization_k1_k1_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6832
  • Qwk: 0.4648
  • Mse: 0.6821
  • Rmse: 0.8259

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.0711 0.0018 9.0684 3.0114
No log 2.0 4 8.2853 0.0 8.2829 2.8780
No log 3.0 6 7.2977 0.0 7.2953 2.7010
No log 4.0 8 6.2710 0.0 6.2687 2.5037
No log 5.0 10 5.3707 0.0089 5.3685 2.3170
No log 6.0 12 4.4574 0.0 4.4553 2.1108
No log 7.0 14 3.7252 0.0 3.7233 1.9296
No log 8.0 16 3.1111 0.0 3.1093 1.7633
No log 9.0 18 2.5355 0.0 2.5337 1.5918
No log 10.0 20 2.0975 0.1036 2.0958 1.4477
No log 11.0 22 1.6936 0.0106 1.6919 1.3007
No log 12.0 24 1.4167 0.0 1.4152 1.1896
No log 13.0 26 1.2678 0.0 1.2663 1.1253
No log 14.0 28 1.2258 0.0211 1.2243 1.1065
No log 15.0 30 1.2334 0.0418 1.2318 1.1099
No log 16.0 32 1.1346 0.0834 1.1330 1.0644
No log 17.0 34 0.9743 0.0418 0.9731 0.9864
No log 18.0 36 0.9349 0.0418 0.9337 0.9663
No log 19.0 38 0.8947 0.1405 0.8934 0.9452
No log 20.0 40 1.2955 0.2216 1.2939 1.1375
No log 21.0 42 1.0225 0.2428 1.0211 1.0105
No log 22.0 44 0.8460 0.3275 0.8445 0.9190
No log 23.0 46 0.9054 0.3219 0.9039 0.9508
No log 24.0 48 0.7026 0.4752 0.7013 0.8375
No log 25.0 50 0.7253 0.3979 0.7240 0.8509
No log 26.0 52 0.7563 0.3885 0.7550 0.8689
No log 27.0 54 0.6378 0.4477 0.6365 0.7978
No log 28.0 56 0.7725 0.3952 0.7710 0.8781
No log 29.0 58 0.7750 0.3981 0.7735 0.8795
No log 30.0 60 0.6485 0.4024 0.6474 0.8046
No log 31.0 62 0.8012 0.3004 0.8003 0.8946
No log 32.0 64 1.0170 0.2640 1.0160 1.0079
No log 33.0 66 0.7040 0.4066 0.7031 0.8385
No log 34.0 68 0.6447 0.4577 0.6435 0.8022
No log 35.0 70 1.1439 0.2657 1.1424 1.0689
No log 36.0 72 1.0619 0.2585 1.0605 1.0298
No log 37.0 74 0.7097 0.4330 0.7087 0.8418
No log 38.0 76 0.8660 0.3515 0.8651 0.9301
No log 39.0 78 1.6362 0.1514 1.6348 1.2786
No log 40.0 80 1.6766 0.1578 1.6752 1.2943
No log 41.0 82 0.9300 0.3534 0.9291 0.9639
No log 42.0 84 0.8503 0.4187 0.8497 0.9218
No log 43.0 86 0.8224 0.4330 0.8217 0.9065
No log 44.0 88 0.6832 0.4648 0.6821 0.8259

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for genki10/ASAP_FineTuningBERT_AugV6_k1_task1_organization_k1_k1_fold1

Finetuned
(2658)
this model