ASAP_FineTuningBERT_AugV5_k5_task1_organization_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4852
  • Qwk: -0.0042
  • Mse: 1.4855
  • Rmse: 1.2188

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.5 2 11.8763 0.0009 11.8760 3.4462
No log 1.0 4 10.7359 0.0 10.7356 3.2765
No log 1.5 6 9.6523 0.0 9.6520 3.1068
No log 2.0 8 8.2248 0.0 8.2244 2.8678
7.119 2.5 10 6.7082 0.0 6.7079 2.5900
7.119 3.0 12 5.4057 0.0175 5.4055 2.3250
7.119 3.5 14 4.3645 0.0 4.3644 2.0891
7.119 4.0 16 3.3058 0.0 3.3057 1.8182
7.119 4.5 18 2.5812 0.0 2.5812 1.6066
2.651 5.0 20 2.4649 -0.0039 2.4650 1.5700
2.651 5.5 22 1.5727 0.0107 1.5728 1.2541
2.651 6.0 24 1.9704 -0.0078 1.9704 1.4037
2.651 6.5 26 1.3790 0.0 1.3791 1.1744
2.651 7.0 28 0.9704 0.0148 0.9706 0.9852
1.8394 7.5 30 1.7472 0.0 1.7473 1.3219
1.8394 8.0 32 1.6862 0.0 1.6864 1.2986
1.8394 8.5 34 1.0668 0.0060 1.0671 1.0330
1.8394 9.0 36 2.3213 -0.0157 2.3216 1.5237
1.8394 9.5 38 2.0945 0.0170 2.0948 1.4473
1.7437 10.0 40 0.8312 0.2639 0.8315 0.9119
1.7437 10.5 42 0.8256 0.2474 0.8258 0.9088
1.7437 11.0 44 1.0948 0.0020 1.0950 1.0464
1.7437 11.5 46 2.5768 0.0131 2.5770 1.6053
1.7437 12.0 48 2.2378 0.0183 2.2380 1.4960
1.7109 12.5 50 1.1503 0.0020 1.1505 1.0726
1.7109 13.0 52 1.0304 0.0139 1.0306 1.0152
1.7109 13.5 54 1.5776 0.0195 1.5779 1.2561
1.7109 14.0 56 2.2739 0.0008 2.2743 1.5081
1.7109 14.5 58 1.3161 0.0454 1.3165 1.1474
1.3649 15.0 60 1.0224 0.0829 1.0227 1.0113
1.3649 15.5 62 1.8539 0.0088 1.8545 1.3618
1.3649 16.0 64 1.7880 0.0328 1.7887 1.3374
1.3649 16.5 66 0.9277 0.1088 0.9281 0.9634
1.3649 17.0 68 1.4719 0.0081 1.4724 1.2134
0.8133 17.5 70 1.9911 -0.0239 1.9917 1.4113
0.8133 18.0 72 1.0399 0.0182 1.0402 1.0199
0.8133 18.5 74 1.3717 -0.0577 1.3719 1.1713
0.8133 19.0 76 2.2099 -0.0518 2.2104 1.4867
0.8133 19.5 78 1.1462 0.0011 1.1462 1.0706
0.4608 20.0 80 1.2812 0.0711 1.2812 1.1319
0.4608 20.5 82 2.3508 -0.0062 2.3511 1.5333
0.4608 21.0 84 1.2563 0.0762 1.2560 1.1207
0.4608 21.5 86 1.2902 0.0655 1.2899 1.1358
0.4608 22.0 88 1.9311 -0.0105 1.9311 1.3897
0.2855 22.5 90 1.2444 0.0124 1.2442 1.1154
0.2855 23.0 92 1.3341 -0.0059 1.3340 1.1550
0.2855 23.5 94 1.8019 -0.0501 1.8019 1.3423
0.2855 24.0 96 1.2545 -0.0151 1.2542 1.1199
0.2855 24.5 98 1.3238 -0.0174 1.3235 1.1504
0.2192 25.0 100 2.6024 -0.0816 2.6024 1.6132
0.2192 25.5 102 2.4496 -0.0650 2.4497 1.5651
0.2192 26.0 104 1.2284 0.0141 1.2282 1.1082
0.2192 26.5 106 1.2064 0.0491 1.2062 1.0983
0.2192 27.0 108 1.4935 -0.0079 1.4935 1.2221
0.3413 27.5 110 2.3217 -0.0562 2.3220 1.5238
0.3413 28.0 112 1.5922 -0.0370 1.5923 1.2619
0.3413 28.5 114 1.1728 0.0291 1.1727 1.0829
0.3413 29.0 116 1.2217 0.0215 1.2217 1.1053
0.3413 29.5 118 1.7645 -0.0408 1.7647 1.3284
0.2401 30.0 120 1.4475 -0.0167 1.4476 1.2032
0.2401 30.5 122 1.1728 0.0591 1.1727 1.0829
0.2401 31.0 124 1.5074 0.0268 1.5075 1.2278
0.2401 31.5 126 1.4937 0.0320 1.4938 1.2222
0.2401 32.0 128 1.2809 0.0479 1.2809 1.1318
0.1554 32.5 130 1.5515 -0.0275 1.5516 1.2456
0.1554 33.0 132 1.5708 -0.0350 1.5710 1.2534
0.1554 33.5 134 1.5117 -0.0159 1.5118 1.2295
0.1554 34.0 136 1.4684 0.0074 1.4685 1.2118
0.1554 34.5 138 1.6740 -0.0085 1.6742 1.2939
0.1028 35.0 140 1.4070 0.0152 1.4071 1.1862
0.1028 35.5 142 1.4596 -0.0037 1.4597 1.2082
0.1028 36.0 144 1.3547 -0.0406 1.3548 1.1639
0.1028 36.5 146 1.6595 -0.0762 1.6597 1.2883
0.1028 37.0 148 1.5575 -0.0616 1.5577 1.2481
0.1158 37.5 150 1.6870 -0.0749 1.6872 1.2989
0.1158 38.0 152 1.4428 -0.0574 1.4430 1.2012
0.1158 38.5 154 1.6117 -0.0593 1.6119 1.2696
0.1158 39.0 156 2.0997 -0.0441 2.1000 1.4491
0.1158 39.5 158 1.5408 -0.0222 1.5410 1.2414
0.1092 40.0 160 1.5296 -0.0086 1.5298 1.2368
0.1092 40.5 162 1.8495 -0.0343 1.8498 1.3601
0.1092 41.0 164 1.3725 -0.0409 1.3726 1.1716
0.1092 41.5 166 1.3758 -0.0168 1.3758 1.1730
0.1092 42.0 168 1.7392 -0.0530 1.7394 1.3189
0.0917 42.5 170 1.4577 -0.0229 1.4579 1.2074
0.0917 43.0 172 1.3837 -0.0072 1.3838 1.1764
0.0917 43.5 174 1.6090 -0.0143 1.6093 1.2686
0.0917 44.0 176 1.4142 -0.0249 1.4144 1.1893
0.0917 44.5 178 1.5240 -0.0337 1.5242 1.2346
0.0843 45.0 180 1.7093 -0.0802 1.7096 1.3075
0.0843 45.5 182 1.4922 -0.0629 1.4924 1.2216
0.0843 46.0 184 1.5010 -0.0574 1.5012 1.2252
0.0843 46.5 186 1.3308 -0.0473 1.3309 1.1537
0.0843 47.0 188 1.4318 -0.0322 1.4320 1.1967
0.0836 47.5 190 1.8419 -0.0629 1.8425 1.3574
0.0836 48.0 192 1.5278 -0.0065 1.5283 1.2362
0.0836 48.5 194 1.2978 -0.0342 1.2980 1.1393
0.0836 49.0 196 1.5664 -0.0278 1.5668 1.2517
0.0836 49.5 198 1.5636 -0.0272 1.5639 1.2506
0.0896 50.0 200 1.3666 -0.0471 1.3668 1.1691
0.0896 50.5 202 1.6588 -0.0436 1.6591 1.2881
0.0896 51.0 204 1.6191 -0.0455 1.6194 1.2726
0.0896 51.5 206 1.4623 -0.0318 1.4626 1.2094
0.0896 52.0 208 1.4966 -0.0172 1.4968 1.2235
0.0773 52.5 210 1.6613 -0.0095 1.6617 1.2891
0.0773 53.0 212 1.4049 0.0021 1.4052 1.1854
0.0773 53.5 214 1.4373 -0.0065 1.4376 1.1990
0.0773 54.0 216 1.5958 -0.0291 1.5961 1.2634
0.0773 54.5 218 1.4454 -0.0333 1.4457 1.2024
0.0687 55.0 220 1.4091 -0.0386 1.4094 1.1872
0.0687 55.5 222 1.6484 -0.0576 1.6488 1.2841
0.0687 56.0 224 1.5496 -0.0409 1.5499 1.2450
0.0687 56.5 226 1.2905 -0.0325 1.2907 1.1361
0.0687 57.0 228 1.4019 -0.0125 1.4022 1.1841
0.0696 57.5 230 1.6977 -0.0504 1.6982 1.3031
0.0696 58.0 232 1.4809 0.0042 1.4812 1.2171
0.0696 58.5 234 1.3361 -0.0090 1.3363 1.1560
0.0696 59.0 236 1.5811 -0.0226 1.5814 1.2575
0.0696 59.5 238 1.6554 -0.0376 1.6557 1.2867
0.0664 60.0 240 1.4235 -0.0326 1.4237 1.1932
0.0664 60.5 242 1.4047 -0.0227 1.4049 1.1853
0.0664 61.0 244 1.5051 0.0014 1.5053 1.2269
0.0664 61.5 246 1.5080 0.0014 1.5083 1.2281
0.0664 62.0 248 1.4394 -0.0235 1.4396 1.1998
0.0665 62.5 250 1.5026 -0.0187 1.5028 1.2259
0.0665 63.0 252 1.7206 -0.0586 1.7209 1.3118
0.0665 63.5 254 1.6201 -0.0271 1.6204 1.2730
0.0665 64.0 256 1.2826 -0.0270 1.2828 1.1326
0.0665 64.5 258 1.2206 -0.0399 1.2207 1.1049
0.0802 65.0 260 1.3948 -0.0601 1.3951 1.1812
0.0802 65.5 262 1.7397 -0.0563 1.7402 1.3191
0.0802 66.0 264 1.6850 -0.0595 1.6854 1.2982
0.0802 66.5 266 1.3559 -0.0449 1.3561 1.1645
0.0802 67.0 268 1.2955 -0.0319 1.2957 1.1383
0.0774 67.5 270 1.4937 -0.0124 1.4940 1.2223
0.0774 68.0 272 1.5489 -0.0068 1.5492 1.2447
0.0774 68.5 274 1.3468 -0.0152 1.3470 1.1606
0.0774 69.0 276 1.3488 -0.0273 1.3490 1.1615
0.0774 69.5 278 1.5682 -0.0331 1.5685 1.2524
0.061 70.0 280 1.5731 -0.0243 1.5734 1.2544
0.061 70.5 282 1.4411 -0.0135 1.4414 1.2006
0.061 71.0 284 1.3983 -0.0371 1.3986 1.1826
0.061 71.5 286 1.4600 -0.0049 1.4603 1.2084
0.061 72.0 288 1.4482 -0.0010 1.4485 1.2035
0.0524 72.5 290 1.3803 -0.0141 1.3806 1.1750
0.0524 73.0 292 1.3863 -0.0161 1.3866 1.1775
0.0524 73.5 294 1.4000 0.0028 1.4003 1.1834
0.0524 74.0 296 1.5445 -0.0195 1.5448 1.2429
0.0524 74.5 298 1.5321 -0.0089 1.5325 1.2379
0.0522 75.0 300 1.3178 0.0002 1.3181 1.1481
0.0522 75.5 302 1.2816 -0.0076 1.2819 1.1322
0.0522 76.0 304 1.4289 0.0101 1.4292 1.1955
0.0522 76.5 306 1.5266 0.0065 1.5270 1.2357
0.0522 77.0 308 1.4589 0.0170 1.4593 1.2080
0.0561 77.5 310 1.4046 0.0252 1.4050 1.1853
0.0561 78.0 312 1.4922 0.0166 1.4926 1.2217
0.0561 78.5 314 1.4925 0.0131 1.4929 1.2218
0.0561 79.0 316 1.5638 -0.0034 1.5642 1.2507
0.0561 79.5 318 1.4874 0.0139 1.4879 1.2198
0.0507 80.0 320 1.3243 0.0131 1.3247 1.1509
0.0507 80.5 322 1.3136 0.0181 1.3139 1.1463
0.0507 81.0 324 1.4468 0.0013 1.4472 1.2030
0.0507 81.5 326 1.5821 -0.0123 1.5825 1.2580
0.0507 82.0 328 1.5234 -0.0071 1.5238 1.2344
0.0578 82.5 330 1.4058 0.0036 1.4061 1.1858
0.0578 83.0 332 1.3699 0.0021 1.3703 1.1706
0.0578 83.5 334 1.4275 0.0055 1.4278 1.1949
0.0578 84.0 336 1.4520 0.0147 1.4523 1.2051
0.0578 84.5 338 1.4216 -0.0058 1.4219 1.1924
0.0482 85.0 340 1.4180 0.0113 1.4184 1.1910
0.0482 85.5 342 1.4686 0.0004 1.4689 1.2120
0.0482 86.0 344 1.4491 0.0051 1.4495 1.2039
0.0482 86.5 346 1.3732 0.0097 1.3735 1.1720
0.0482 87.0 348 1.3105 -0.0057 1.3108 1.1449
0.0459 87.5 350 1.3560 0.0187 1.3563 1.1646
0.0459 88.0 352 1.4969 -0.0043 1.4973 1.2236
0.0459 88.5 354 1.5637 -0.0183 1.5641 1.2506
0.0459 89.0 356 1.5045 -0.0079 1.5048 1.2267
0.0459 89.5 358 1.3803 0.0192 1.3806 1.1750
0.0491 90.0 360 1.3400 0.0244 1.3403 1.1577
0.0491 90.5 362 1.3608 0.0222 1.3611 1.1667
0.0491 91.0 364 1.4394 0.0164 1.4398 1.1999
0.0491 91.5 366 1.4648 0.0069 1.4651 1.2104
0.0491 92.0 368 1.4396 0.0137 1.4400 1.2000
0.0462 92.5 370 1.3863 0.0202 1.3866 1.1775
0.0462 93.0 372 1.3325 0.0033 1.3327 1.1544
0.0462 93.5 374 1.3454 0.0002 1.3457 1.1600
0.0462 94.0 376 1.4026 0.0199 1.4029 1.1845
0.0462 94.5 378 1.4780 -0.0079 1.4783 1.2159
0.0453 95.0 380 1.5155 -0.0079 1.5159 1.2312
0.0453 95.5 382 1.5046 -0.0061 1.5050 1.2268
0.0453 96.0 384 1.4737 -0.0023 1.4740 1.2141
0.0453 96.5 386 1.4432 0.0156 1.4436 1.2015
0.0453 97.0 388 1.4165 0.0190 1.4168 1.1903
0.0427 97.5 390 1.4103 0.0200 1.4106 1.1877
0.0427 98.0 392 1.4242 0.0101 1.4245 1.1935
0.0427 98.5 394 1.4478 0.0147 1.4482 1.2034
0.0427 99.0 396 1.4695 0.0004 1.4698 1.2124
0.0427 99.5 398 1.4819 -0.0042 1.4823 1.2175
0.0392 100.0 400 1.4852 -0.0042 1.4855 1.2188

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k5_task1_organization_fold2

Finetuned
(2422)
this model