ASAP_FineTuningBERT_AugV5_k5_task1_organization_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6166
  • Qwk: -0.1582
  • Mse: 1.6183
  • Rmse: 1.2721

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.5 2 11.5647 0.0035 11.5621 3.4003
No log 1.0 4 10.2947 0.0 10.2922 3.2082
No log 1.5 6 9.0405 0.0 9.0383 3.0064
No log 2.0 8 7.5117 0.0 7.5098 2.7404
6.7382 2.5 10 6.1602 0.0 6.1587 2.4817
6.7382 3.0 12 4.8371 0.0079 4.8359 2.1991
6.7382 3.5 14 3.7753 0.0 3.7744 1.9428
6.7382 4.0 16 2.9009 0.0 2.9002 1.7030
6.7382 4.5 18 2.2367 0.1238 2.2363 1.4954
2.4735 5.0 20 1.7328 0.0482 1.7327 1.3163
2.4735 5.5 22 1.9272 0.0172 1.9271 1.3882
2.4735 6.0 24 1.4921 0.0 1.4922 1.2215
2.4735 6.5 26 1.5170 0.0 1.5171 1.2317
2.4735 7.0 28 2.3766 -0.0400 2.3764 1.5416
1.8305 7.5 30 2.3210 -0.0522 2.3210 1.5235
1.8305 8.0 32 1.6197 0.0 1.6199 1.2727
1.8305 8.5 34 1.5999 0.0 1.6001 1.2649
1.8305 9.0 36 1.7838 0.0 1.7838 1.3356
1.8305 9.5 38 2.3189 -0.0065 2.3186 1.5227
1.886 10.0 40 2.0015 0.0618 2.0014 1.4147
1.886 10.5 42 1.5807 0.0 1.5808 1.2573
1.886 11.0 44 1.6351 0.0067 1.6352 1.2788
1.886 11.5 46 1.7611 0.0285 1.7613 1.3271
1.886 12.0 48 2.6442 -0.0192 2.6440 1.6260
1.6533 12.5 50 2.6906 -0.0204 2.6905 1.6403
1.6533 13.0 52 1.9880 0.0011 1.9883 1.4101
1.6533 13.5 54 1.5667 0.0106 1.5673 1.2519
1.6533 14.0 56 2.5662 -0.0206 2.5661 1.6019
1.6533 14.5 58 2.6220 -0.0343 2.6220 1.6193
1.4469 15.0 60 1.2531 -0.0227 1.2540 1.1198
1.4469 15.5 62 1.0764 0.0079 1.0775 1.0380
1.4469 16.0 64 2.0646 -0.0398 2.0650 1.4370
1.4469 16.5 66 2.5642 -0.0576 2.5643 1.6014
1.4469 17.0 68 1.3323 -0.0714 1.3334 1.1547
1.2134 17.5 70 1.2480 -0.0448 1.2493 1.1177
1.2134 18.0 72 2.0983 -0.0892 2.0989 1.4488
1.2134 18.5 74 1.7854 -0.0821 1.7863 1.3365
1.2134 19.0 76 1.4471 -0.0898 1.4484 1.2035
1.2134 19.5 78 1.8720 -0.1119 1.8730 1.3686
0.7057 20.0 80 1.4689 -0.1198 1.4705 1.2126
0.7057 20.5 82 1.8390 -0.0857 1.8403 1.3566
0.7057 21.0 84 1.5746 -0.1205 1.5762 1.2555
0.7057 21.5 86 1.5987 -0.1062 1.6004 1.2650
0.7057 22.0 88 1.7665 -0.0564 1.7679 1.3296
0.3914 22.5 90 1.5196 -0.0795 1.5214 1.2334
0.3914 23.0 92 1.8290 -0.0593 1.8304 1.3529
0.3914 23.5 94 1.5312 -0.0940 1.5332 1.2382
0.3914 24.0 96 1.7650 -0.1177 1.7669 1.3292
0.3914 24.5 98 1.7662 -0.1120 1.7682 1.3297
0.2337 25.0 100 2.0956 -0.0755 2.0973 1.4482
0.2337 25.5 102 1.7598 -0.1129 1.7618 1.3273
0.2337 26.0 104 1.6137 -0.0962 1.6158 1.2711
0.2337 26.5 106 1.4413 -0.0515 1.4437 1.2015
0.2337 27.0 108 2.0157 -0.0884 2.0172 1.4203
0.2313 27.5 110 2.0397 -0.0860 2.0412 1.4287
0.2313 28.0 112 1.4370 -0.0737 1.4394 1.1997
0.2313 28.5 114 1.4610 -0.0875 1.4634 1.2097
0.2313 29.0 116 2.1808 -0.1157 2.1821 1.4772
0.2313 29.5 118 2.1224 -0.1251 2.1240 1.4574
0.2362 30.0 120 1.5798 -0.1429 1.5822 1.2579
0.2362 30.5 122 1.7971 -0.1248 1.7991 1.3413
0.2362 31.0 124 2.1158 -0.1348 2.1172 1.4551
0.2362 31.5 126 1.8306 -0.1243 1.8323 1.3536
0.2362 32.0 128 1.5257 -0.1292 1.5280 1.2361
0.1815 32.5 130 1.8271 -0.1418 1.8288 1.3523
0.1815 33.0 132 2.2833 -0.1243 2.2844 1.5114
0.1815 33.5 134 1.7140 -0.1497 1.7158 1.3099
0.1815 34.0 136 1.5116 -0.1003 1.5142 1.2305
0.1815 34.5 138 1.5894 -0.1802 1.5918 1.2617
0.1837 35.0 140 2.1056 -0.1129 2.1070 1.4515
0.1837 35.5 142 1.8147 -0.1342 1.8164 1.3478
0.1837 36.0 144 1.4955 -0.1479 1.4979 1.2239
0.1837 36.5 146 1.5876 -0.1395 1.5896 1.2608
0.1837 37.0 148 2.0363 -0.0824 2.0376 1.4275
0.1677 37.5 150 1.6954 -0.1445 1.6972 1.3028
0.1677 38.0 152 1.5357 -0.1300 1.5382 1.2403
0.1677 38.5 154 1.6481 -0.1516 1.6504 1.2847
0.1677 39.0 156 2.0011 -0.1168 2.0025 1.4151
0.1677 39.5 158 1.7431 -0.1456 1.7447 1.3209
0.1616 40.0 160 1.4668 -0.1519 1.4687 1.2119
0.1616 40.5 162 1.6069 -0.1521 1.6086 1.2683
0.1616 41.0 164 2.0608 -0.1228 2.0620 1.4360
0.1616 41.5 166 1.7958 -0.1341 1.7976 1.3408
0.1616 42.0 168 1.5077 -0.1394 1.5100 1.2288
0.1464 42.5 170 1.5856 -0.1635 1.5875 1.2600
0.1464 43.0 172 2.0362 -0.0852 2.0373 1.4273
0.1464 43.5 174 1.8051 -0.0987 1.8064 1.3440
0.1464 44.0 176 1.5122 -0.1358 1.5142 1.2305
0.1464 44.5 178 1.6482 -0.1679 1.6499 1.2845
0.1192 45.0 180 1.6906 -0.1826 1.6924 1.3009
0.1192 45.5 182 1.6477 -0.1868 1.6497 1.2844
0.1192 46.0 184 1.7975 -0.1925 1.7993 1.3414
0.1192 46.5 186 1.7748 -0.1905 1.7766 1.3329
0.1192 47.0 188 1.6441 -0.1741 1.6461 1.2830
0.0905 47.5 190 1.8150 -0.1495 1.8166 1.3478
0.0905 48.0 192 1.7069 -0.1711 1.7087 1.3072
0.0905 48.5 194 1.6030 -0.1498 1.6052 1.2670
0.0905 49.0 196 1.8305 -0.1302 1.8323 1.3536
0.0905 49.5 198 1.8072 -0.1350 1.8090 1.3450
0.0933 50.0 200 1.5568 -0.1192 1.5591 1.2486
0.0933 50.5 202 1.5744 -0.1558 1.5764 1.2556
0.0933 51.0 204 1.7797 -0.1157 1.7813 1.3347
0.0933 51.5 206 1.6194 -0.1742 1.6213 1.2733
0.0933 52.0 208 1.6065 -0.1744 1.6084 1.2682
0.0801 52.5 210 1.6284 -0.1829 1.6302 1.2768
0.0801 53.0 212 1.7295 -0.1537 1.7311 1.3157
0.0801 53.5 214 1.7426 -0.1578 1.7444 1.3208
0.0801 54.0 216 1.7369 -0.1811 1.7389 1.3187
0.0801 54.5 218 1.7221 -0.1498 1.7240 1.3130
0.0865 55.0 220 1.5254 -0.1477 1.5275 1.2359
0.0865 55.5 222 1.5156 -0.1525 1.5175 1.2319
0.0865 56.0 224 1.7015 -0.0860 1.7029 1.3049
0.0865 56.5 226 1.5354 -0.1586 1.5372 1.2398
0.0865 57.0 228 1.5181 -0.1068 1.5201 1.2329
0.0914 57.5 230 1.6984 -0.1319 1.7001 1.3039
0.0914 58.0 232 1.6806 -0.1383 1.6823 1.2970
0.0914 58.5 234 1.5330 -0.1416 1.5349 1.2389
0.0914 59.0 236 1.5850 -0.1320 1.5866 1.2596
0.0914 59.5 238 1.6766 -0.1261 1.6780 1.2954
0.0841 60.0 240 1.6079 -0.1642 1.6095 1.2687
0.0841 60.5 242 1.5571 -0.1507 1.5590 1.2486
0.0841 61.0 244 1.6647 -0.1555 1.6665 1.2909
0.0841 61.5 246 1.6859 -0.1555 1.6877 1.2991
0.0841 62.0 248 1.6482 -0.1593 1.6502 1.2846
0.0716 62.5 250 1.7877 -0.1411 1.7894 1.3377
0.0716 63.0 252 1.7370 -0.1426 1.7387 1.3186
0.0716 63.5 254 1.5754 -0.1724 1.5773 1.2559
0.0716 64.0 256 1.6682 -0.1469 1.6700 1.2923
0.0716 64.5 258 1.6549 -0.1445 1.6567 1.2871
0.072 65.0 260 1.6259 -0.1603 1.6278 1.2759
0.072 65.5 262 1.7018 -0.1217 1.7035 1.3052
0.072 66.0 264 1.6397 -0.1240 1.6414 1.2812
0.072 66.5 266 1.5339 -0.1589 1.5358 1.2393
0.072 67.0 268 1.5325 -0.1572 1.5344 1.2387
0.0633 67.5 270 1.5390 -0.1534 1.5408 1.2413
0.0633 68.0 272 1.6272 -0.1317 1.6289 1.2763
0.0633 68.5 274 1.6251 -0.1347 1.6268 1.2755
0.0633 69.0 276 1.6184 -0.1456 1.6202 1.2729
0.0633 69.5 278 1.6925 -0.1262 1.6942 1.3016
0.0608 70.0 280 1.5904 -0.1343 1.5922 1.2618
0.0608 70.5 282 1.5616 -0.1500 1.5633 1.2503
0.0608 71.0 284 1.6800 -0.1166 1.6815 1.2967
0.0608 71.5 286 1.6569 -0.1264 1.6585 1.2878
0.0608 72.0 288 1.5280 -0.1442 1.5298 1.2369
0.0608 72.5 290 1.5257 -0.1473 1.5276 1.2360
0.0608 73.0 292 1.6153 -0.1414 1.6170 1.2716
0.0608 73.5 294 1.6603 -0.1301 1.6619 1.2892
0.0608 74.0 296 1.6194 -0.1426 1.6210 1.2732
0.0608 74.5 298 1.6376 -0.1422 1.6394 1.2804
0.0567 75.0 300 1.6955 -0.1421 1.6971 1.3027
0.0567 75.5 302 1.6128 -0.1644 1.6147 1.2707
0.0567 76.0 304 1.5957 -0.1744 1.5977 1.2640
0.0567 76.5 306 1.7191 -0.1481 1.7208 1.3118
0.0567 77.0 308 1.7538 -0.1169 1.7555 1.3249
0.057 77.5 310 1.6954 -0.1475 1.6971 1.3027
0.057 78.0 312 1.6927 -0.1303 1.6944 1.3017
0.057 78.5 314 1.6641 -0.1358 1.6658 1.2907
0.057 79.0 316 1.6643 -0.1393 1.6661 1.2908
0.057 79.5 318 1.6539 -0.1383 1.6556 1.2867
0.0551 80.0 320 1.6737 -0.1381 1.6755 1.2944
0.0551 80.5 322 1.6046 -0.1579 1.6064 1.2674
0.0551 81.0 324 1.5694 -0.1599 1.5712 1.2535
0.0551 81.5 326 1.6347 -0.1418 1.6364 1.2792
0.0551 82.0 328 1.7387 -0.1006 1.7402 1.3192
0.0519 82.5 330 1.7356 -0.0999 1.7371 1.3180
0.0519 83.0 332 1.6334 -0.1520 1.6351 1.2787
0.0519 83.5 334 1.5602 -0.1516 1.5620 1.2498
0.0519 84.0 336 1.5992 -0.1650 1.6009 1.2653
0.0519 84.5 338 1.7205 -0.1016 1.7221 1.3123
0.0602 85.0 340 1.7420 -0.1129 1.7435 1.3204
0.0602 85.5 342 1.6844 -0.1173 1.6861 1.2985
0.0602 86.0 344 1.6561 -0.1335 1.6578 1.2876
0.0602 86.5 346 1.6614 -0.1231 1.6630 1.2896
0.0602 87.0 348 1.6373 -0.1298 1.6390 1.2802
0.0524 87.5 350 1.5984 -0.1458 1.6000 1.2649
0.0524 88.0 352 1.6263 -0.1210 1.6279 1.2759
0.0524 88.5 354 1.6193 -0.1352 1.6209 1.2731
0.0524 89.0 356 1.5902 -0.1458 1.5918 1.2617
0.0524 89.5 358 1.6152 -0.1361 1.6168 1.2715
0.0495 90.0 360 1.6213 -0.1361 1.6230 1.2740
0.0495 90.5 362 1.6301 -0.1327 1.6318 1.2774
0.0495 91.0 364 1.6393 -0.1267 1.6409 1.2810
0.0495 91.5 366 1.6419 -0.1303 1.6436 1.2820
0.0495 92.0 368 1.6349 -0.1347 1.6366 1.2793
0.0507 92.5 370 1.6425 -0.1197 1.6441 1.2822
0.0507 93.0 372 1.6277 -0.1356 1.6294 1.2765
0.0507 93.5 374 1.5936 -0.1662 1.5953 1.2630
0.0507 94.0 376 1.5941 -0.1662 1.5958 1.2632
0.0507 94.5 378 1.6239 -0.1305 1.6255 1.2750
0.0527 95.0 380 1.6358 -0.1224 1.6374 1.2796
0.0527 95.5 382 1.6605 -0.1083 1.6621 1.2892
0.0527 96.0 384 1.6792 -0.1066 1.6808 1.2964
0.0527 96.5 386 1.6662 -0.1115 1.6678 1.2914
0.0527 97.0 388 1.6451 -0.1234 1.6467 1.2832
0.0477 97.5 390 1.6212 -0.1567 1.6229 1.2739
0.0477 98.0 392 1.6103 -0.1661 1.6120 1.2697
0.0477 98.5 394 1.6111 -0.1661 1.6128 1.2700
0.0477 99.0 396 1.6145 -0.1614 1.6162 1.2713
0.0477 99.5 398 1.6154 -0.1582 1.6171 1.2716
0.0516 100.0 400 1.6166 -0.1582 1.6183 1.2721

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k5_task1_organization_fold1

Finetuned
(2422)
this model