ASAP_FineTuningBERT_AugV5_k4_task1_organization_fold2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1329
- Qwk: 0.3780
- Mse: 1.1330
- Rmse: 1.0644
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.6667 | 2 | 10.7117 | 0.0053 | 10.7114 | 3.2728 |
No log | 1.3333 | 4 | 9.5577 | 0.0 | 9.5575 | 3.0915 |
No log | 2.0 | 6 | 7.9636 | 0.0 | 7.9634 | 2.8220 |
No log | 2.6667 | 8 | 6.1491 | 0.0082 | 6.1489 | 2.4797 |
5.8547 | 3.3333 | 10 | 4.4595 | 0.0078 | 4.4595 | 2.1117 |
5.8547 | 4.0 | 12 | 3.2486 | 0.0 | 3.2487 | 1.8024 |
5.8547 | 4.6667 | 14 | 2.5375 | 0.0409 | 2.5378 | 1.5931 |
5.8547 | 5.3333 | 16 | 1.4979 | 0.0241 | 1.4980 | 1.2239 |
5.8547 | 6.0 | 18 | 1.2646 | 0.0115 | 1.2646 | 1.1245 |
2.101 | 6.6667 | 20 | 1.3153 | 0.0 | 1.3153 | 1.1469 |
2.101 | 7.3333 | 22 | 1.2655 | 0.0 | 1.2655 | 1.1249 |
2.101 | 8.0 | 24 | 1.3189 | 0.0 | 1.3189 | 1.1484 |
2.101 | 8.6667 | 26 | 1.5842 | 0.0 | 1.5842 | 1.2587 |
2.101 | 9.3333 | 28 | 1.4404 | 0.0 | 1.4405 | 1.2002 |
1.7618 | 10.0 | 30 | 1.2460 | 0.0 | 1.2461 | 1.1163 |
1.7618 | 10.6667 | 32 | 1.5953 | 0.0181 | 1.5953 | 1.2631 |
1.7618 | 11.3333 | 34 | 1.4416 | 0.0097 | 1.4416 | 1.2007 |
1.7618 | 12.0 | 36 | 1.2034 | 0.0 | 1.2035 | 1.0970 |
1.7618 | 12.6667 | 38 | 1.1086 | 0.0 | 1.1088 | 1.0530 |
1.6919 | 13.3333 | 40 | 1.4800 | 0.0247 | 1.4800 | 1.2166 |
1.6919 | 14.0 | 42 | 1.6453 | 0.0454 | 1.6453 | 1.2827 |
1.6919 | 14.6667 | 44 | 1.2997 | 0.0420 | 1.2998 | 1.1401 |
1.6919 | 15.3333 | 46 | 1.4696 | 0.0790 | 1.4695 | 1.2122 |
1.6919 | 16.0 | 48 | 1.1281 | 0.1725 | 1.1282 | 1.0621 |
1.5423 | 16.6667 | 50 | 1.0051 | 0.2676 | 1.0052 | 1.0026 |
1.5423 | 17.3333 | 52 | 2.0195 | 0.1542 | 2.0187 | 1.4208 |
1.5423 | 18.0 | 54 | 1.7553 | 0.1800 | 1.7546 | 1.3246 |
1.5423 | 18.6667 | 56 | 1.0008 | 0.2236 | 1.0009 | 1.0005 |
1.5423 | 19.3333 | 58 | 1.6340 | 0.1706 | 1.6334 | 1.2781 |
1.2664 | 20.0 | 60 | 1.5188 | 0.2014 | 1.5183 | 1.2322 |
1.2664 | 20.6667 | 62 | 0.9308 | 0.3463 | 0.9311 | 0.9649 |
1.2664 | 21.3333 | 64 | 1.9508 | 0.2470 | 1.9497 | 1.3963 |
1.2664 | 22.0 | 66 | 1.8380 | 0.2414 | 1.8371 | 1.3554 |
1.2664 | 22.6667 | 68 | 1.0053 | 0.3343 | 1.0057 | 1.0029 |
0.8963 | 23.3333 | 70 | 1.8924 | 0.2372 | 1.8916 | 1.3753 |
0.8963 | 24.0 | 72 | 1.6462 | 0.2494 | 1.6457 | 1.2829 |
0.8963 | 24.6667 | 74 | 0.9347 | 0.3449 | 0.9351 | 0.9670 |
0.8963 | 25.3333 | 76 | 1.6332 | 0.2458 | 1.6327 | 1.2778 |
0.8963 | 26.0 | 78 | 1.4823 | 0.2646 | 1.4820 | 1.2174 |
0.6293 | 26.6667 | 80 | 0.9280 | 0.3031 | 0.9284 | 0.9635 |
0.6293 | 27.3333 | 82 | 1.6647 | 0.2525 | 1.6641 | 1.2900 |
0.6293 | 28.0 | 84 | 1.6358 | 0.2464 | 1.6353 | 1.2788 |
0.6293 | 28.6667 | 86 | 1.0228 | 0.3032 | 1.0232 | 1.0115 |
0.6293 | 29.3333 | 88 | 1.8608 | 0.2288 | 1.8601 | 1.3638 |
0.4218 | 30.0 | 90 | 1.7701 | 0.2336 | 1.7695 | 1.3302 |
0.4218 | 30.6667 | 92 | 1.0591 | 0.3212 | 1.0595 | 1.0293 |
0.4218 | 31.3333 | 94 | 1.8084 | 0.2410 | 1.8078 | 1.3445 |
0.4218 | 32.0 | 96 | 1.6573 | 0.2456 | 1.6568 | 1.2872 |
0.4218 | 32.6667 | 98 | 1.0233 | 0.3282 | 1.0237 | 1.0118 |
0.3432 | 33.3333 | 100 | 1.6590 | 0.2471 | 1.6585 | 1.2878 |
0.3432 | 34.0 | 102 | 1.5391 | 0.2528 | 1.5387 | 1.2404 |
0.3432 | 34.6667 | 104 | 1.0098 | 0.3488 | 1.0101 | 1.0050 |
0.3432 | 35.3333 | 106 | 1.5953 | 0.2553 | 1.5947 | 1.2628 |
0.3432 | 36.0 | 108 | 1.4915 | 0.2603 | 1.4912 | 1.2211 |
0.2485 | 36.6667 | 110 | 1.0365 | 0.3681 | 1.0368 | 1.0183 |
0.2485 | 37.3333 | 112 | 1.7052 | 0.2609 | 1.7046 | 1.3056 |
0.2485 | 38.0 | 114 | 1.6595 | 0.2803 | 1.6590 | 1.2880 |
0.2485 | 38.6667 | 116 | 1.1268 | 0.3639 | 1.1270 | 1.0616 |
0.2485 | 39.3333 | 118 | 1.6399 | 0.2838 | 1.6395 | 1.2804 |
0.2295 | 40.0 | 120 | 1.4232 | 0.3015 | 1.4230 | 1.1929 |
0.2295 | 40.6667 | 122 | 1.0620 | 0.3889 | 1.0623 | 1.0307 |
0.2295 | 41.3333 | 124 | 1.6320 | 0.3030 | 1.6315 | 1.2773 |
0.2295 | 42.0 | 126 | 1.6095 | 0.3091 | 1.6090 | 1.2685 |
0.2295 | 42.6667 | 128 | 1.1056 | 0.3977 | 1.1057 | 1.0515 |
0.1805 | 43.3333 | 130 | 1.4969 | 0.3105 | 1.4965 | 1.2233 |
0.1805 | 44.0 | 132 | 1.3641 | 0.3228 | 1.3637 | 1.1678 |
0.1805 | 44.6667 | 134 | 1.0115 | 0.4215 | 1.0117 | 1.0058 |
0.1805 | 45.3333 | 136 | 1.3866 | 0.3275 | 1.3862 | 1.1774 |
0.1805 | 46.0 | 138 | 1.3714 | 0.3400 | 1.3710 | 1.1709 |
0.1606 | 46.6667 | 140 | 1.0935 | 0.4078 | 1.0936 | 1.0458 |
0.1606 | 47.3333 | 142 | 1.2099 | 0.3682 | 1.2097 | 1.0999 |
0.1606 | 48.0 | 144 | 1.7931 | 0.2690 | 1.7924 | 1.3388 |
0.1606 | 48.6667 | 146 | 1.3238 | 0.3396 | 1.3235 | 1.1504 |
0.1606 | 49.3333 | 148 | 1.1842 | 0.3689 | 1.1842 | 1.0882 |
0.1642 | 50.0 | 150 | 1.3593 | 0.3325 | 1.3590 | 1.1658 |
0.1642 | 50.6667 | 152 | 1.1897 | 0.3688 | 1.1896 | 1.0907 |
0.1642 | 51.3333 | 154 | 1.3304 | 0.3454 | 1.3300 | 1.1533 |
0.1642 | 52.0 | 156 | 1.1747 | 0.3755 | 1.1746 | 1.0838 |
0.1642 | 52.6667 | 158 | 1.3170 | 0.3438 | 1.3166 | 1.1474 |
0.1163 | 53.3333 | 160 | 1.0703 | 0.4184 | 1.0704 | 1.0346 |
0.1163 | 54.0 | 162 | 1.2428 | 0.3762 | 1.2426 | 1.1147 |
0.1163 | 54.6667 | 164 | 1.3523 | 0.3376 | 1.3520 | 1.1627 |
0.1163 | 55.3333 | 166 | 1.2638 | 0.3707 | 1.2636 | 1.1241 |
0.1163 | 56.0 | 168 | 1.3318 | 0.3516 | 1.3315 | 1.1539 |
0.1191 | 56.6667 | 170 | 1.1825 | 0.3837 | 1.1824 | 1.0874 |
0.1191 | 57.3333 | 172 | 1.2999 | 0.3538 | 1.2997 | 1.1401 |
0.1191 | 58.0 | 174 | 1.0629 | 0.4264 | 1.0630 | 1.0310 |
0.1191 | 58.6667 | 176 | 1.2063 | 0.3884 | 1.2064 | 1.0984 |
0.1191 | 59.3333 | 178 | 1.6948 | 0.2946 | 1.6945 | 1.3017 |
0.1279 | 60.0 | 180 | 1.4071 | 0.3425 | 1.4071 | 1.1862 |
0.1279 | 60.6667 | 182 | 1.1029 | 0.3961 | 1.1032 | 1.0503 |
0.1279 | 61.3333 | 184 | 1.1897 | 0.3897 | 1.1899 | 1.0908 |
0.1279 | 62.0 | 186 | 1.5816 | 0.2959 | 1.5813 | 1.2575 |
0.1279 | 62.6667 | 188 | 1.3318 | 0.3300 | 1.3316 | 1.1540 |
0.1118 | 63.3333 | 190 | 1.0335 | 0.4199 | 1.0336 | 1.0167 |
0.1118 | 64.0 | 192 | 1.1341 | 0.3858 | 1.1341 | 1.0649 |
0.1118 | 64.6667 | 194 | 1.4467 | 0.3076 | 1.4464 | 1.2027 |
0.1118 | 65.3333 | 196 | 1.2405 | 0.3788 | 1.2403 | 1.1137 |
0.1118 | 66.0 | 198 | 1.0421 | 0.4018 | 1.0423 | 1.0209 |
0.1188 | 66.6667 | 200 | 1.1169 | 0.3852 | 1.1169 | 1.0569 |
0.1188 | 67.3333 | 202 | 1.3896 | 0.3243 | 1.3893 | 1.1787 |
0.1188 | 68.0 | 204 | 1.2522 | 0.3731 | 1.2521 | 1.1190 |
0.1188 | 68.6667 | 206 | 1.0825 | 0.3899 | 1.0826 | 1.0405 |
0.1188 | 69.3333 | 208 | 1.1421 | 0.3891 | 1.1422 | 1.0687 |
0.0979 | 70.0 | 210 | 1.3888 | 0.3175 | 1.3886 | 1.1784 |
0.0979 | 70.6667 | 212 | 1.2508 | 0.3742 | 1.2507 | 1.1184 |
0.0979 | 71.3333 | 214 | 1.0699 | 0.3997 | 1.0701 | 1.0344 |
0.0979 | 72.0 | 216 | 1.1400 | 0.3863 | 1.1400 | 1.0677 |
0.0979 | 72.6667 | 218 | 1.1723 | 0.3830 | 1.1723 | 1.0827 |
0.0871 | 73.3333 | 220 | 1.1686 | 0.3880 | 1.1686 | 1.0810 |
0.0871 | 74.0 | 222 | 1.2582 | 0.3650 | 1.2580 | 1.1216 |
0.0871 | 74.6667 | 224 | 1.1550 | 0.3862 | 1.1550 | 1.0747 |
0.0871 | 75.3333 | 226 | 1.0538 | 0.4068 | 1.0539 | 1.0266 |
0.0871 | 76.0 | 228 | 1.1532 | 0.3921 | 1.1532 | 1.0739 |
0.0822 | 76.6667 | 230 | 1.3724 | 0.3266 | 1.3723 | 1.1714 |
0.0822 | 77.3333 | 232 | 1.2698 | 0.3728 | 1.2698 | 1.1268 |
0.0822 | 78.0 | 234 | 1.0713 | 0.4095 | 1.0716 | 1.0352 |
0.0822 | 78.6667 | 236 | 1.0481 | 0.4084 | 1.0484 | 1.0239 |
0.0822 | 79.3333 | 238 | 1.1305 | 0.4081 | 1.1306 | 1.0633 |
0.1003 | 80.0 | 240 | 1.3567 | 0.3385 | 1.3565 | 1.1647 |
0.1003 | 80.6667 | 242 | 1.3199 | 0.3412 | 1.3198 | 1.1488 |
0.1003 | 81.3333 | 244 | 1.1253 | 0.4004 | 1.1253 | 1.0608 |
0.1003 | 82.0 | 246 | 1.0874 | 0.4069 | 1.0874 | 1.0428 |
0.1003 | 82.6667 | 248 | 1.1779 | 0.3768 | 1.1778 | 1.0853 |
0.0767 | 83.3333 | 250 | 1.1647 | 0.3747 | 1.1646 | 1.0792 |
0.0767 | 84.0 | 252 | 1.1000 | 0.3960 | 1.1000 | 1.0488 |
0.0767 | 84.6667 | 254 | 1.1100 | 0.4024 | 1.1100 | 1.0536 |
0.0767 | 85.3333 | 256 | 1.1787 | 0.3962 | 1.1787 | 1.0857 |
0.0767 | 86.0 | 258 | 1.1919 | 0.3888 | 1.1919 | 1.0918 |
0.0657 | 86.6667 | 260 | 1.1310 | 0.4007 | 1.1311 | 1.0635 |
0.0657 | 87.3333 | 262 | 1.1526 | 0.3930 | 1.1527 | 1.0736 |
0.0657 | 88.0 | 264 | 1.1796 | 0.3927 | 1.1796 | 1.0861 |
0.0657 | 88.6667 | 266 | 1.1828 | 0.3866 | 1.1828 | 1.0876 |
0.0657 | 89.3333 | 268 | 1.1727 | 0.3900 | 1.1728 | 1.0830 |
0.0643 | 90.0 | 270 | 1.2086 | 0.3867 | 1.2086 | 1.0994 |
0.0643 | 90.6667 | 272 | 1.1789 | 0.3895 | 1.1790 | 1.0858 |
0.0643 | 91.3333 | 274 | 1.1231 | 0.3910 | 1.1232 | 1.0598 |
0.0643 | 92.0 | 276 | 1.0864 | 0.4037 | 1.0865 | 1.0424 |
0.0643 | 92.6667 | 278 | 1.0870 | 0.3943 | 1.0871 | 1.0426 |
0.0541 | 93.3333 | 280 | 1.1382 | 0.3754 | 1.1383 | 1.0669 |
0.0541 | 94.0 | 282 | 1.1724 | 0.3614 | 1.1724 | 1.0828 |
0.0541 | 94.6667 | 284 | 1.1468 | 0.3647 | 1.1467 | 1.0709 |
0.0541 | 95.3333 | 286 | 1.0903 | 0.4016 | 1.0903 | 1.0442 |
0.0541 | 96.0 | 288 | 1.0445 | 0.4210 | 1.0446 | 1.0221 |
0.0624 | 96.6667 | 290 | 1.0397 | 0.4272 | 1.0398 | 1.0197 |
0.0624 | 97.3333 | 292 | 1.0571 | 0.4060 | 1.0572 | 1.0282 |
0.0624 | 98.0 | 294 | 1.0860 | 0.4004 | 1.0861 | 1.0421 |
0.0624 | 98.6667 | 296 | 1.1159 | 0.3853 | 1.1160 | 1.0564 |
0.0624 | 99.3333 | 298 | 1.1293 | 0.3783 | 1.1294 | 1.0627 |
0.0576 | 100.0 | 300 | 1.1329 | 0.3780 | 1.1330 | 1.0644 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for genki10/ASAP_FineTuningBERT_AugV5_k4_task1_organization_fold2
Base model
google-bert/bert-base-uncased