ASAP_FineTuningBERT_AugV5_k4_task1_organization_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1329
  • Qwk: 0.3780
  • Mse: 1.1330
  • Rmse: 1.0644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.6667 2 10.7117 0.0053 10.7114 3.2728
No log 1.3333 4 9.5577 0.0 9.5575 3.0915
No log 2.0 6 7.9636 0.0 7.9634 2.8220
No log 2.6667 8 6.1491 0.0082 6.1489 2.4797
5.8547 3.3333 10 4.4595 0.0078 4.4595 2.1117
5.8547 4.0 12 3.2486 0.0 3.2487 1.8024
5.8547 4.6667 14 2.5375 0.0409 2.5378 1.5931
5.8547 5.3333 16 1.4979 0.0241 1.4980 1.2239
5.8547 6.0 18 1.2646 0.0115 1.2646 1.1245
2.101 6.6667 20 1.3153 0.0 1.3153 1.1469
2.101 7.3333 22 1.2655 0.0 1.2655 1.1249
2.101 8.0 24 1.3189 0.0 1.3189 1.1484
2.101 8.6667 26 1.5842 0.0 1.5842 1.2587
2.101 9.3333 28 1.4404 0.0 1.4405 1.2002
1.7618 10.0 30 1.2460 0.0 1.2461 1.1163
1.7618 10.6667 32 1.5953 0.0181 1.5953 1.2631
1.7618 11.3333 34 1.4416 0.0097 1.4416 1.2007
1.7618 12.0 36 1.2034 0.0 1.2035 1.0970
1.7618 12.6667 38 1.1086 0.0 1.1088 1.0530
1.6919 13.3333 40 1.4800 0.0247 1.4800 1.2166
1.6919 14.0 42 1.6453 0.0454 1.6453 1.2827
1.6919 14.6667 44 1.2997 0.0420 1.2998 1.1401
1.6919 15.3333 46 1.4696 0.0790 1.4695 1.2122
1.6919 16.0 48 1.1281 0.1725 1.1282 1.0621
1.5423 16.6667 50 1.0051 0.2676 1.0052 1.0026
1.5423 17.3333 52 2.0195 0.1542 2.0187 1.4208
1.5423 18.0 54 1.7553 0.1800 1.7546 1.3246
1.5423 18.6667 56 1.0008 0.2236 1.0009 1.0005
1.5423 19.3333 58 1.6340 0.1706 1.6334 1.2781
1.2664 20.0 60 1.5188 0.2014 1.5183 1.2322
1.2664 20.6667 62 0.9308 0.3463 0.9311 0.9649
1.2664 21.3333 64 1.9508 0.2470 1.9497 1.3963
1.2664 22.0 66 1.8380 0.2414 1.8371 1.3554
1.2664 22.6667 68 1.0053 0.3343 1.0057 1.0029
0.8963 23.3333 70 1.8924 0.2372 1.8916 1.3753
0.8963 24.0 72 1.6462 0.2494 1.6457 1.2829
0.8963 24.6667 74 0.9347 0.3449 0.9351 0.9670
0.8963 25.3333 76 1.6332 0.2458 1.6327 1.2778
0.8963 26.0 78 1.4823 0.2646 1.4820 1.2174
0.6293 26.6667 80 0.9280 0.3031 0.9284 0.9635
0.6293 27.3333 82 1.6647 0.2525 1.6641 1.2900
0.6293 28.0 84 1.6358 0.2464 1.6353 1.2788
0.6293 28.6667 86 1.0228 0.3032 1.0232 1.0115
0.6293 29.3333 88 1.8608 0.2288 1.8601 1.3638
0.4218 30.0 90 1.7701 0.2336 1.7695 1.3302
0.4218 30.6667 92 1.0591 0.3212 1.0595 1.0293
0.4218 31.3333 94 1.8084 0.2410 1.8078 1.3445
0.4218 32.0 96 1.6573 0.2456 1.6568 1.2872
0.4218 32.6667 98 1.0233 0.3282 1.0237 1.0118
0.3432 33.3333 100 1.6590 0.2471 1.6585 1.2878
0.3432 34.0 102 1.5391 0.2528 1.5387 1.2404
0.3432 34.6667 104 1.0098 0.3488 1.0101 1.0050
0.3432 35.3333 106 1.5953 0.2553 1.5947 1.2628
0.3432 36.0 108 1.4915 0.2603 1.4912 1.2211
0.2485 36.6667 110 1.0365 0.3681 1.0368 1.0183
0.2485 37.3333 112 1.7052 0.2609 1.7046 1.3056
0.2485 38.0 114 1.6595 0.2803 1.6590 1.2880
0.2485 38.6667 116 1.1268 0.3639 1.1270 1.0616
0.2485 39.3333 118 1.6399 0.2838 1.6395 1.2804
0.2295 40.0 120 1.4232 0.3015 1.4230 1.1929
0.2295 40.6667 122 1.0620 0.3889 1.0623 1.0307
0.2295 41.3333 124 1.6320 0.3030 1.6315 1.2773
0.2295 42.0 126 1.6095 0.3091 1.6090 1.2685
0.2295 42.6667 128 1.1056 0.3977 1.1057 1.0515
0.1805 43.3333 130 1.4969 0.3105 1.4965 1.2233
0.1805 44.0 132 1.3641 0.3228 1.3637 1.1678
0.1805 44.6667 134 1.0115 0.4215 1.0117 1.0058
0.1805 45.3333 136 1.3866 0.3275 1.3862 1.1774
0.1805 46.0 138 1.3714 0.3400 1.3710 1.1709
0.1606 46.6667 140 1.0935 0.4078 1.0936 1.0458
0.1606 47.3333 142 1.2099 0.3682 1.2097 1.0999
0.1606 48.0 144 1.7931 0.2690 1.7924 1.3388
0.1606 48.6667 146 1.3238 0.3396 1.3235 1.1504
0.1606 49.3333 148 1.1842 0.3689 1.1842 1.0882
0.1642 50.0 150 1.3593 0.3325 1.3590 1.1658
0.1642 50.6667 152 1.1897 0.3688 1.1896 1.0907
0.1642 51.3333 154 1.3304 0.3454 1.3300 1.1533
0.1642 52.0 156 1.1747 0.3755 1.1746 1.0838
0.1642 52.6667 158 1.3170 0.3438 1.3166 1.1474
0.1163 53.3333 160 1.0703 0.4184 1.0704 1.0346
0.1163 54.0 162 1.2428 0.3762 1.2426 1.1147
0.1163 54.6667 164 1.3523 0.3376 1.3520 1.1627
0.1163 55.3333 166 1.2638 0.3707 1.2636 1.1241
0.1163 56.0 168 1.3318 0.3516 1.3315 1.1539
0.1191 56.6667 170 1.1825 0.3837 1.1824 1.0874
0.1191 57.3333 172 1.2999 0.3538 1.2997 1.1401
0.1191 58.0 174 1.0629 0.4264 1.0630 1.0310
0.1191 58.6667 176 1.2063 0.3884 1.2064 1.0984
0.1191 59.3333 178 1.6948 0.2946 1.6945 1.3017
0.1279 60.0 180 1.4071 0.3425 1.4071 1.1862
0.1279 60.6667 182 1.1029 0.3961 1.1032 1.0503
0.1279 61.3333 184 1.1897 0.3897 1.1899 1.0908
0.1279 62.0 186 1.5816 0.2959 1.5813 1.2575
0.1279 62.6667 188 1.3318 0.3300 1.3316 1.1540
0.1118 63.3333 190 1.0335 0.4199 1.0336 1.0167
0.1118 64.0 192 1.1341 0.3858 1.1341 1.0649
0.1118 64.6667 194 1.4467 0.3076 1.4464 1.2027
0.1118 65.3333 196 1.2405 0.3788 1.2403 1.1137
0.1118 66.0 198 1.0421 0.4018 1.0423 1.0209
0.1188 66.6667 200 1.1169 0.3852 1.1169 1.0569
0.1188 67.3333 202 1.3896 0.3243 1.3893 1.1787
0.1188 68.0 204 1.2522 0.3731 1.2521 1.1190
0.1188 68.6667 206 1.0825 0.3899 1.0826 1.0405
0.1188 69.3333 208 1.1421 0.3891 1.1422 1.0687
0.0979 70.0 210 1.3888 0.3175 1.3886 1.1784
0.0979 70.6667 212 1.2508 0.3742 1.2507 1.1184
0.0979 71.3333 214 1.0699 0.3997 1.0701 1.0344
0.0979 72.0 216 1.1400 0.3863 1.1400 1.0677
0.0979 72.6667 218 1.1723 0.3830 1.1723 1.0827
0.0871 73.3333 220 1.1686 0.3880 1.1686 1.0810
0.0871 74.0 222 1.2582 0.3650 1.2580 1.1216
0.0871 74.6667 224 1.1550 0.3862 1.1550 1.0747
0.0871 75.3333 226 1.0538 0.4068 1.0539 1.0266
0.0871 76.0 228 1.1532 0.3921 1.1532 1.0739
0.0822 76.6667 230 1.3724 0.3266 1.3723 1.1714
0.0822 77.3333 232 1.2698 0.3728 1.2698 1.1268
0.0822 78.0 234 1.0713 0.4095 1.0716 1.0352
0.0822 78.6667 236 1.0481 0.4084 1.0484 1.0239
0.0822 79.3333 238 1.1305 0.4081 1.1306 1.0633
0.1003 80.0 240 1.3567 0.3385 1.3565 1.1647
0.1003 80.6667 242 1.3199 0.3412 1.3198 1.1488
0.1003 81.3333 244 1.1253 0.4004 1.1253 1.0608
0.1003 82.0 246 1.0874 0.4069 1.0874 1.0428
0.1003 82.6667 248 1.1779 0.3768 1.1778 1.0853
0.0767 83.3333 250 1.1647 0.3747 1.1646 1.0792
0.0767 84.0 252 1.1000 0.3960 1.1000 1.0488
0.0767 84.6667 254 1.1100 0.4024 1.1100 1.0536
0.0767 85.3333 256 1.1787 0.3962 1.1787 1.0857
0.0767 86.0 258 1.1919 0.3888 1.1919 1.0918
0.0657 86.6667 260 1.1310 0.4007 1.1311 1.0635
0.0657 87.3333 262 1.1526 0.3930 1.1527 1.0736
0.0657 88.0 264 1.1796 0.3927 1.1796 1.0861
0.0657 88.6667 266 1.1828 0.3866 1.1828 1.0876
0.0657 89.3333 268 1.1727 0.3900 1.1728 1.0830
0.0643 90.0 270 1.2086 0.3867 1.2086 1.0994
0.0643 90.6667 272 1.1789 0.3895 1.1790 1.0858
0.0643 91.3333 274 1.1231 0.3910 1.1232 1.0598
0.0643 92.0 276 1.0864 0.4037 1.0865 1.0424
0.0643 92.6667 278 1.0870 0.3943 1.0871 1.0426
0.0541 93.3333 280 1.1382 0.3754 1.1383 1.0669
0.0541 94.0 282 1.1724 0.3614 1.1724 1.0828
0.0541 94.6667 284 1.1468 0.3647 1.1467 1.0709
0.0541 95.3333 286 1.0903 0.4016 1.0903 1.0442
0.0541 96.0 288 1.0445 0.4210 1.0446 1.0221
0.0624 96.6667 290 1.0397 0.4272 1.0398 1.0197
0.0624 97.3333 292 1.0571 0.4060 1.0572 1.0282
0.0624 98.0 294 1.0860 0.4004 1.0861 1.0421
0.0624 98.6667 296 1.1159 0.3853 1.1160 1.0564
0.0624 99.3333 298 1.1293 0.3783 1.1294 1.0627
0.0576 100.0 300 1.1329 0.3780 1.1330 1.0644

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k4_task1_organization_fold2

Finetuned
(2422)
this model