ASAP_FineTuningBERT_AugV5_k4_task1_organization_fold0
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5071
- Qwk: 0.2737
- Mse: 1.5071
- Rmse: 1.2277
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.6667 | 2 | 9.0690 | 0.0 | 9.0690 | 3.0115 |
No log | 1.3333 | 4 | 7.6655 | 0.0 | 7.6655 | 2.7687 |
No log | 2.0 | 6 | 6.9385 | 0.0 | 6.9385 | 2.6341 |
No log | 2.6667 | 8 | 6.0508 | 0.0216 | 6.0508 | 2.4598 |
4.8555 | 3.3333 | 10 | 5.2284 | 0.0115 | 5.2284 | 2.2866 |
4.8555 | 4.0 | 12 | 4.4262 | 0.0039 | 4.4262 | 2.1039 |
4.8555 | 4.6667 | 14 | 3.6383 | 0.0 | 3.6383 | 1.9074 |
4.8555 | 5.3333 | 16 | 2.9057 | 0.0 | 2.9057 | 1.7046 |
4.8555 | 6.0 | 18 | 2.2491 | 0.0850 | 2.2491 | 1.4997 |
2.4087 | 6.6667 | 20 | 1.7801 | 0.0382 | 1.7801 | 1.3342 |
2.4087 | 7.3333 | 22 | 1.6431 | 0.0316 | 1.6431 | 1.2818 |
2.4087 | 8.0 | 24 | 1.9085 | 0.0590 | 1.9085 | 1.3815 |
2.4087 | 8.6667 | 26 | 1.5951 | 0.0316 | 1.5951 | 1.2630 |
2.4087 | 9.3333 | 28 | 1.4231 | 0.0316 | 1.4231 | 1.1929 |
1.7827 | 10.0 | 30 | 1.9661 | 0.1238 | 1.9661 | 1.4022 |
1.7827 | 10.6667 | 32 | 2.7146 | 0.0632 | 2.7146 | 1.6476 |
1.7827 | 11.3333 | 34 | 2.1531 | 0.1716 | 2.1531 | 1.4674 |
1.7827 | 12.0 | 36 | 1.3052 | 0.0447 | 1.3052 | 1.1425 |
1.7827 | 12.6667 | 38 | 1.5152 | 0.0897 | 1.5152 | 1.2309 |
1.6996 | 13.3333 | 40 | 2.6726 | 0.0813 | 2.6726 | 1.6348 |
1.6996 | 14.0 | 42 | 3.0227 | 0.0204 | 3.0227 | 1.7386 |
1.6996 | 14.6667 | 44 | 2.4825 | 0.1137 | 2.4825 | 1.5756 |
1.6996 | 15.3333 | 46 | 1.3449 | 0.1105 | 1.3449 | 1.1597 |
1.6996 | 16.0 | 48 | 1.1689 | 0.1455 | 1.1689 | 1.0812 |
1.6541 | 16.6667 | 50 | 2.0098 | 0.1216 | 2.0098 | 1.4177 |
1.6541 | 17.3333 | 52 | 3.0336 | 0.0531 | 3.0336 | 1.7417 |
1.6541 | 18.0 | 54 | 2.7094 | 0.0770 | 2.7094 | 1.6460 |
1.6541 | 18.6667 | 56 | 1.7147 | 0.1591 | 1.7147 | 1.3095 |
1.6541 | 19.3333 | 58 | 1.0701 | 0.2860 | 1.0701 | 1.0344 |
1.2336 | 20.0 | 60 | 1.4950 | 0.2379 | 1.4950 | 1.2227 |
1.2336 | 20.6667 | 62 | 2.5290 | 0.0772 | 2.5290 | 1.5903 |
1.2336 | 21.3333 | 64 | 2.2908 | 0.1012 | 2.2908 | 1.5135 |
1.2336 | 22.0 | 66 | 1.2765 | 0.2635 | 1.2765 | 1.1298 |
1.2336 | 22.6667 | 68 | 1.3651 | 0.2296 | 1.3651 | 1.1684 |
0.7782 | 23.3333 | 70 | 2.4047 | 0.0862 | 2.4047 | 1.5507 |
0.7782 | 24.0 | 72 | 2.3177 | 0.0877 | 2.3177 | 1.5224 |
0.7782 | 24.6667 | 74 | 1.3631 | 0.2396 | 1.3631 | 1.1675 |
0.7782 | 25.3333 | 76 | 1.5247 | 0.2292 | 1.5247 | 1.2348 |
0.7782 | 26.0 | 78 | 2.1085 | 0.1342 | 2.1085 | 1.4521 |
0.4341 | 26.6667 | 80 | 1.5375 | 0.2178 | 1.5375 | 1.2400 |
0.4341 | 27.3333 | 82 | 2.0030 | 0.1508 | 2.0030 | 1.4153 |
0.4341 | 28.0 | 84 | 2.4371 | 0.0926 | 2.4371 | 1.5611 |
0.4341 | 28.6667 | 86 | 1.7195 | 0.1510 | 1.7195 | 1.3113 |
0.4341 | 29.3333 | 88 | 2.0927 | 0.1406 | 2.0927 | 1.4466 |
0.2682 | 30.0 | 90 | 2.3033 | 0.1303 | 2.3033 | 1.5177 |
0.2682 | 30.6667 | 92 | 1.6060 | 0.2287 | 1.6060 | 1.2673 |
0.2682 | 31.3333 | 94 | 1.7280 | 0.2321 | 1.7280 | 1.3145 |
0.2682 | 32.0 | 96 | 2.6927 | 0.1152 | 2.6927 | 1.6410 |
0.2682 | 32.6667 | 98 | 2.2621 | 0.1746 | 2.2621 | 1.5040 |
0.2247 | 33.3333 | 100 | 1.4874 | 0.2915 | 1.4874 | 1.2196 |
0.2247 | 34.0 | 102 | 1.7766 | 0.2448 | 1.7766 | 1.3329 |
0.2247 | 34.6667 | 104 | 2.0857 | 0.1835 | 2.0857 | 1.4442 |
0.2247 | 35.3333 | 106 | 1.5131 | 0.2845 | 1.5131 | 1.2301 |
0.2247 | 36.0 | 108 | 1.5584 | 0.2823 | 1.5584 | 1.2484 |
0.179 | 36.6667 | 110 | 2.0858 | 0.1764 | 2.0858 | 1.4442 |
0.179 | 37.3333 | 112 | 1.6165 | 0.2539 | 1.6165 | 1.2714 |
0.179 | 38.0 | 114 | 1.7275 | 0.2420 | 1.7275 | 1.3144 |
0.179 | 38.6667 | 116 | 1.8210 | 0.2189 | 1.8210 | 1.3495 |
0.179 | 39.3333 | 118 | 2.1455 | 0.1717 | 2.1455 | 1.4648 |
0.1493 | 40.0 | 120 | 1.5247 | 0.3030 | 1.5247 | 1.2348 |
0.1493 | 40.6667 | 122 | 1.4957 | 0.3053 | 1.4957 | 1.2230 |
0.1493 | 41.3333 | 124 | 1.9484 | 0.2143 | 1.9484 | 1.3959 |
0.1493 | 42.0 | 126 | 1.7468 | 0.2608 | 1.7468 | 1.3217 |
0.1493 | 42.6667 | 128 | 1.7644 | 0.2763 | 1.7644 | 1.3283 |
0.128 | 43.3333 | 130 | 2.1228 | 0.2025 | 2.1228 | 1.4570 |
0.128 | 44.0 | 132 | 2.0809 | 0.2131 | 2.0809 | 1.4425 |
0.128 | 44.6667 | 134 | 2.2372 | 0.1715 | 2.2372 | 1.4957 |
0.128 | 45.3333 | 136 | 1.8516 | 0.2445 | 1.8516 | 1.3607 |
0.128 | 46.0 | 138 | 1.9335 | 0.2216 | 1.9335 | 1.3905 |
0.0991 | 46.6667 | 140 | 2.2975 | 0.1611 | 2.2975 | 1.5158 |
0.0991 | 47.3333 | 142 | 1.7128 | 0.2617 | 1.7128 | 1.3087 |
0.0991 | 48.0 | 144 | 1.6409 | 0.2690 | 1.6409 | 1.2810 |
0.0991 | 48.6667 | 146 | 1.8524 | 0.2364 | 1.8524 | 1.3610 |
0.0991 | 49.3333 | 148 | 1.8970 | 0.2238 | 1.8970 | 1.3773 |
0.0988 | 50.0 | 150 | 1.6201 | 0.2905 | 1.6201 | 1.2728 |
0.0988 | 50.6667 | 152 | 1.8059 | 0.2372 | 1.8059 | 1.3439 |
0.0988 | 51.3333 | 154 | 1.6158 | 0.2931 | 1.6158 | 1.2711 |
0.0988 | 52.0 | 156 | 1.5329 | 0.3033 | 1.5329 | 1.2381 |
0.0988 | 52.6667 | 158 | 1.8816 | 0.2325 | 1.8816 | 1.3717 |
0.0809 | 53.3333 | 160 | 1.7108 | 0.2688 | 1.7108 | 1.3080 |
0.0809 | 54.0 | 162 | 1.5249 | 0.3058 | 1.5249 | 1.2349 |
0.0809 | 54.6667 | 164 | 1.2596 | 0.3303 | 1.2596 | 1.1223 |
0.0809 | 55.3333 | 166 | 1.5501 | 0.3147 | 1.5501 | 1.2450 |
0.0809 | 56.0 | 168 | 1.8061 | 0.2478 | 1.8061 | 1.3439 |
0.1067 | 56.6667 | 170 | 1.5341 | 0.3177 | 1.5341 | 1.2386 |
0.1067 | 57.3333 | 172 | 1.4945 | 0.3148 | 1.4945 | 1.2225 |
0.1067 | 58.0 | 174 | 1.7990 | 0.2476 | 1.7990 | 1.3413 |
0.1067 | 58.6667 | 176 | 1.9050 | 0.2270 | 1.9050 | 1.3802 |
0.1067 | 59.3333 | 178 | 1.5962 | 0.2778 | 1.5962 | 1.2634 |
0.0705 | 60.0 | 180 | 1.5447 | 0.2851 | 1.5447 | 1.2429 |
0.0705 | 60.6667 | 182 | 1.6104 | 0.2698 | 1.6104 | 1.2690 |
0.0705 | 61.3333 | 184 | 1.5860 | 0.2676 | 1.5860 | 1.2594 |
0.0705 | 62.0 | 186 | 1.5977 | 0.2762 | 1.5977 | 1.2640 |
0.0705 | 62.6667 | 188 | 1.6779 | 0.2657 | 1.6779 | 1.2954 |
0.0724 | 63.3333 | 190 | 1.5805 | 0.2859 | 1.5805 | 1.2572 |
0.0724 | 64.0 | 192 | 1.7477 | 0.2570 | 1.7477 | 1.3220 |
0.0724 | 64.6667 | 194 | 1.9430 | 0.2082 | 1.9430 | 1.3939 |
0.0724 | 65.3333 | 196 | 1.7571 | 0.2393 | 1.7571 | 1.3256 |
0.0724 | 66.0 | 198 | 1.4695 | 0.2877 | 1.4695 | 1.2122 |
0.0661 | 66.6667 | 200 | 1.5108 | 0.2836 | 1.5108 | 1.2291 |
0.0661 | 67.3333 | 202 | 1.7107 | 0.2425 | 1.7107 | 1.3080 |
0.0661 | 68.0 | 204 | 1.6595 | 0.2548 | 1.6595 | 1.2882 |
0.0661 | 68.6667 | 206 | 1.4383 | 0.3037 | 1.4383 | 1.1993 |
0.0661 | 69.3333 | 208 | 1.5355 | 0.2625 | 1.5355 | 1.2392 |
0.0656 | 70.0 | 210 | 1.5483 | 0.2572 | 1.5483 | 1.2443 |
0.0656 | 70.6667 | 212 | 1.4197 | 0.2974 | 1.4197 | 1.1915 |
0.0656 | 71.3333 | 214 | 1.5078 | 0.2761 | 1.5078 | 1.2279 |
0.0656 | 72.0 | 216 | 1.8226 | 0.2203 | 1.8226 | 1.3500 |
0.0656 | 72.6667 | 218 | 1.9100 | 0.1970 | 1.9100 | 1.3820 |
0.0644 | 73.3333 | 220 | 1.6416 | 0.2402 | 1.6416 | 1.2813 |
0.0644 | 74.0 | 222 | 1.3359 | 0.3017 | 1.3359 | 1.1558 |
0.0644 | 74.6667 | 224 | 1.3737 | 0.2873 | 1.3737 | 1.1721 |
0.0644 | 75.3333 | 226 | 1.6761 | 0.2401 | 1.6761 | 1.2947 |
0.0644 | 76.0 | 228 | 1.8035 | 0.2212 | 1.8035 | 1.3430 |
0.0667 | 76.6667 | 230 | 1.6203 | 0.2620 | 1.6203 | 1.2729 |
0.0667 | 77.3333 | 232 | 1.4950 | 0.2906 | 1.4950 | 1.2227 |
0.0667 | 78.0 | 234 | 1.4850 | 0.2752 | 1.4850 | 1.2186 |
0.0667 | 78.6667 | 236 | 1.5552 | 0.2664 | 1.5552 | 1.2471 |
0.0667 | 79.3333 | 238 | 1.6526 | 0.2427 | 1.6526 | 1.2855 |
0.0582 | 80.0 | 240 | 1.6030 | 0.2569 | 1.6030 | 1.2661 |
0.0582 | 80.6667 | 242 | 1.7156 | 0.2399 | 1.7156 | 1.3098 |
0.0582 | 81.3333 | 244 | 1.8537 | 0.2230 | 1.8537 | 1.3615 |
0.0582 | 82.0 | 246 | 1.7407 | 0.2480 | 1.7407 | 1.3194 |
0.0582 | 82.6667 | 248 | 1.6288 | 0.2702 | 1.6288 | 1.2762 |
0.0576 | 83.3333 | 250 | 1.5769 | 0.2701 | 1.5769 | 1.2558 |
0.0576 | 84.0 | 252 | 1.5610 | 0.2758 | 1.5610 | 1.2494 |
0.0576 | 84.6667 | 254 | 1.4504 | 0.2799 | 1.4504 | 1.2043 |
0.0576 | 85.3333 | 256 | 1.4638 | 0.2866 | 1.4638 | 1.2099 |
0.0576 | 86.0 | 258 | 1.6333 | 0.2668 | 1.6333 | 1.2780 |
0.0584 | 86.6667 | 260 | 1.7992 | 0.2286 | 1.7992 | 1.3413 |
0.0584 | 87.3333 | 262 | 1.7825 | 0.2280 | 1.7825 | 1.3351 |
0.0584 | 88.0 | 264 | 1.6282 | 0.2605 | 1.6282 | 1.2760 |
0.0584 | 88.6667 | 266 | 1.5496 | 0.2681 | 1.5496 | 1.2448 |
0.0584 | 89.3333 | 268 | 1.5631 | 0.2589 | 1.5631 | 1.2502 |
0.0511 | 90.0 | 270 | 1.6483 | 0.2604 | 1.6483 | 1.2839 |
0.0511 | 90.6667 | 272 | 1.6868 | 0.2581 | 1.6868 | 1.2988 |
0.0511 | 91.3333 | 274 | 1.6328 | 0.2638 | 1.6328 | 1.2778 |
0.0511 | 92.0 | 276 | 1.5796 | 0.2766 | 1.5796 | 1.2568 |
0.0511 | 92.6667 | 278 | 1.5551 | 0.2791 | 1.5551 | 1.2470 |
0.0501 | 93.3333 | 280 | 1.5712 | 0.2766 | 1.5712 | 1.2535 |
0.0501 | 94.0 | 282 | 1.5738 | 0.2749 | 1.5738 | 1.2545 |
0.0501 | 94.6667 | 284 | 1.5536 | 0.2704 | 1.5536 | 1.2464 |
0.0501 | 95.3333 | 286 | 1.5227 | 0.2643 | 1.5227 | 1.2340 |
0.0501 | 96.0 | 288 | 1.5199 | 0.2684 | 1.5199 | 1.2329 |
0.0497 | 96.6667 | 290 | 1.5281 | 0.2695 | 1.5281 | 1.2362 |
0.0497 | 97.3333 | 292 | 1.5431 | 0.2651 | 1.5431 | 1.2422 |
0.0497 | 98.0 | 294 | 1.5367 | 0.2655 | 1.5367 | 1.2396 |
0.0497 | 98.6667 | 296 | 1.5256 | 0.2695 | 1.5256 | 1.2352 |
0.0497 | 99.3333 | 298 | 1.5134 | 0.2737 | 1.5134 | 1.2302 |
0.0512 | 100.0 | 300 | 1.5071 | 0.2737 | 1.5071 | 1.2277 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for genki10/ASAP_FineTuningBERT_AugV5_k4_task1_organization_fold0
Base model
google-bert/bert-base-uncased