ASAP_FineTuningBERT_AugV5_k4_task1_organization_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5071
  • Qwk: 0.2737
  • Mse: 1.5071
  • Rmse: 1.2277

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.6667 2 9.0690 0.0 9.0690 3.0115
No log 1.3333 4 7.6655 0.0 7.6655 2.7687
No log 2.0 6 6.9385 0.0 6.9385 2.6341
No log 2.6667 8 6.0508 0.0216 6.0508 2.4598
4.8555 3.3333 10 5.2284 0.0115 5.2284 2.2866
4.8555 4.0 12 4.4262 0.0039 4.4262 2.1039
4.8555 4.6667 14 3.6383 0.0 3.6383 1.9074
4.8555 5.3333 16 2.9057 0.0 2.9057 1.7046
4.8555 6.0 18 2.2491 0.0850 2.2491 1.4997
2.4087 6.6667 20 1.7801 0.0382 1.7801 1.3342
2.4087 7.3333 22 1.6431 0.0316 1.6431 1.2818
2.4087 8.0 24 1.9085 0.0590 1.9085 1.3815
2.4087 8.6667 26 1.5951 0.0316 1.5951 1.2630
2.4087 9.3333 28 1.4231 0.0316 1.4231 1.1929
1.7827 10.0 30 1.9661 0.1238 1.9661 1.4022
1.7827 10.6667 32 2.7146 0.0632 2.7146 1.6476
1.7827 11.3333 34 2.1531 0.1716 2.1531 1.4674
1.7827 12.0 36 1.3052 0.0447 1.3052 1.1425
1.7827 12.6667 38 1.5152 0.0897 1.5152 1.2309
1.6996 13.3333 40 2.6726 0.0813 2.6726 1.6348
1.6996 14.0 42 3.0227 0.0204 3.0227 1.7386
1.6996 14.6667 44 2.4825 0.1137 2.4825 1.5756
1.6996 15.3333 46 1.3449 0.1105 1.3449 1.1597
1.6996 16.0 48 1.1689 0.1455 1.1689 1.0812
1.6541 16.6667 50 2.0098 0.1216 2.0098 1.4177
1.6541 17.3333 52 3.0336 0.0531 3.0336 1.7417
1.6541 18.0 54 2.7094 0.0770 2.7094 1.6460
1.6541 18.6667 56 1.7147 0.1591 1.7147 1.3095
1.6541 19.3333 58 1.0701 0.2860 1.0701 1.0344
1.2336 20.0 60 1.4950 0.2379 1.4950 1.2227
1.2336 20.6667 62 2.5290 0.0772 2.5290 1.5903
1.2336 21.3333 64 2.2908 0.1012 2.2908 1.5135
1.2336 22.0 66 1.2765 0.2635 1.2765 1.1298
1.2336 22.6667 68 1.3651 0.2296 1.3651 1.1684
0.7782 23.3333 70 2.4047 0.0862 2.4047 1.5507
0.7782 24.0 72 2.3177 0.0877 2.3177 1.5224
0.7782 24.6667 74 1.3631 0.2396 1.3631 1.1675
0.7782 25.3333 76 1.5247 0.2292 1.5247 1.2348
0.7782 26.0 78 2.1085 0.1342 2.1085 1.4521
0.4341 26.6667 80 1.5375 0.2178 1.5375 1.2400
0.4341 27.3333 82 2.0030 0.1508 2.0030 1.4153
0.4341 28.0 84 2.4371 0.0926 2.4371 1.5611
0.4341 28.6667 86 1.7195 0.1510 1.7195 1.3113
0.4341 29.3333 88 2.0927 0.1406 2.0927 1.4466
0.2682 30.0 90 2.3033 0.1303 2.3033 1.5177
0.2682 30.6667 92 1.6060 0.2287 1.6060 1.2673
0.2682 31.3333 94 1.7280 0.2321 1.7280 1.3145
0.2682 32.0 96 2.6927 0.1152 2.6927 1.6410
0.2682 32.6667 98 2.2621 0.1746 2.2621 1.5040
0.2247 33.3333 100 1.4874 0.2915 1.4874 1.2196
0.2247 34.0 102 1.7766 0.2448 1.7766 1.3329
0.2247 34.6667 104 2.0857 0.1835 2.0857 1.4442
0.2247 35.3333 106 1.5131 0.2845 1.5131 1.2301
0.2247 36.0 108 1.5584 0.2823 1.5584 1.2484
0.179 36.6667 110 2.0858 0.1764 2.0858 1.4442
0.179 37.3333 112 1.6165 0.2539 1.6165 1.2714
0.179 38.0 114 1.7275 0.2420 1.7275 1.3144
0.179 38.6667 116 1.8210 0.2189 1.8210 1.3495
0.179 39.3333 118 2.1455 0.1717 2.1455 1.4648
0.1493 40.0 120 1.5247 0.3030 1.5247 1.2348
0.1493 40.6667 122 1.4957 0.3053 1.4957 1.2230
0.1493 41.3333 124 1.9484 0.2143 1.9484 1.3959
0.1493 42.0 126 1.7468 0.2608 1.7468 1.3217
0.1493 42.6667 128 1.7644 0.2763 1.7644 1.3283
0.128 43.3333 130 2.1228 0.2025 2.1228 1.4570
0.128 44.0 132 2.0809 0.2131 2.0809 1.4425
0.128 44.6667 134 2.2372 0.1715 2.2372 1.4957
0.128 45.3333 136 1.8516 0.2445 1.8516 1.3607
0.128 46.0 138 1.9335 0.2216 1.9335 1.3905
0.0991 46.6667 140 2.2975 0.1611 2.2975 1.5158
0.0991 47.3333 142 1.7128 0.2617 1.7128 1.3087
0.0991 48.0 144 1.6409 0.2690 1.6409 1.2810
0.0991 48.6667 146 1.8524 0.2364 1.8524 1.3610
0.0991 49.3333 148 1.8970 0.2238 1.8970 1.3773
0.0988 50.0 150 1.6201 0.2905 1.6201 1.2728
0.0988 50.6667 152 1.8059 0.2372 1.8059 1.3439
0.0988 51.3333 154 1.6158 0.2931 1.6158 1.2711
0.0988 52.0 156 1.5329 0.3033 1.5329 1.2381
0.0988 52.6667 158 1.8816 0.2325 1.8816 1.3717
0.0809 53.3333 160 1.7108 0.2688 1.7108 1.3080
0.0809 54.0 162 1.5249 0.3058 1.5249 1.2349
0.0809 54.6667 164 1.2596 0.3303 1.2596 1.1223
0.0809 55.3333 166 1.5501 0.3147 1.5501 1.2450
0.0809 56.0 168 1.8061 0.2478 1.8061 1.3439
0.1067 56.6667 170 1.5341 0.3177 1.5341 1.2386
0.1067 57.3333 172 1.4945 0.3148 1.4945 1.2225
0.1067 58.0 174 1.7990 0.2476 1.7990 1.3413
0.1067 58.6667 176 1.9050 0.2270 1.9050 1.3802
0.1067 59.3333 178 1.5962 0.2778 1.5962 1.2634
0.0705 60.0 180 1.5447 0.2851 1.5447 1.2429
0.0705 60.6667 182 1.6104 0.2698 1.6104 1.2690
0.0705 61.3333 184 1.5860 0.2676 1.5860 1.2594
0.0705 62.0 186 1.5977 0.2762 1.5977 1.2640
0.0705 62.6667 188 1.6779 0.2657 1.6779 1.2954
0.0724 63.3333 190 1.5805 0.2859 1.5805 1.2572
0.0724 64.0 192 1.7477 0.2570 1.7477 1.3220
0.0724 64.6667 194 1.9430 0.2082 1.9430 1.3939
0.0724 65.3333 196 1.7571 0.2393 1.7571 1.3256
0.0724 66.0 198 1.4695 0.2877 1.4695 1.2122
0.0661 66.6667 200 1.5108 0.2836 1.5108 1.2291
0.0661 67.3333 202 1.7107 0.2425 1.7107 1.3080
0.0661 68.0 204 1.6595 0.2548 1.6595 1.2882
0.0661 68.6667 206 1.4383 0.3037 1.4383 1.1993
0.0661 69.3333 208 1.5355 0.2625 1.5355 1.2392
0.0656 70.0 210 1.5483 0.2572 1.5483 1.2443
0.0656 70.6667 212 1.4197 0.2974 1.4197 1.1915
0.0656 71.3333 214 1.5078 0.2761 1.5078 1.2279
0.0656 72.0 216 1.8226 0.2203 1.8226 1.3500
0.0656 72.6667 218 1.9100 0.1970 1.9100 1.3820
0.0644 73.3333 220 1.6416 0.2402 1.6416 1.2813
0.0644 74.0 222 1.3359 0.3017 1.3359 1.1558
0.0644 74.6667 224 1.3737 0.2873 1.3737 1.1721
0.0644 75.3333 226 1.6761 0.2401 1.6761 1.2947
0.0644 76.0 228 1.8035 0.2212 1.8035 1.3430
0.0667 76.6667 230 1.6203 0.2620 1.6203 1.2729
0.0667 77.3333 232 1.4950 0.2906 1.4950 1.2227
0.0667 78.0 234 1.4850 0.2752 1.4850 1.2186
0.0667 78.6667 236 1.5552 0.2664 1.5552 1.2471
0.0667 79.3333 238 1.6526 0.2427 1.6526 1.2855
0.0582 80.0 240 1.6030 0.2569 1.6030 1.2661
0.0582 80.6667 242 1.7156 0.2399 1.7156 1.3098
0.0582 81.3333 244 1.8537 0.2230 1.8537 1.3615
0.0582 82.0 246 1.7407 0.2480 1.7407 1.3194
0.0582 82.6667 248 1.6288 0.2702 1.6288 1.2762
0.0576 83.3333 250 1.5769 0.2701 1.5769 1.2558
0.0576 84.0 252 1.5610 0.2758 1.5610 1.2494
0.0576 84.6667 254 1.4504 0.2799 1.4504 1.2043
0.0576 85.3333 256 1.4638 0.2866 1.4638 1.2099
0.0576 86.0 258 1.6333 0.2668 1.6333 1.2780
0.0584 86.6667 260 1.7992 0.2286 1.7992 1.3413
0.0584 87.3333 262 1.7825 0.2280 1.7825 1.3351
0.0584 88.0 264 1.6282 0.2605 1.6282 1.2760
0.0584 88.6667 266 1.5496 0.2681 1.5496 1.2448
0.0584 89.3333 268 1.5631 0.2589 1.5631 1.2502
0.0511 90.0 270 1.6483 0.2604 1.6483 1.2839
0.0511 90.6667 272 1.6868 0.2581 1.6868 1.2988
0.0511 91.3333 274 1.6328 0.2638 1.6328 1.2778
0.0511 92.0 276 1.5796 0.2766 1.5796 1.2568
0.0511 92.6667 278 1.5551 0.2791 1.5551 1.2470
0.0501 93.3333 280 1.5712 0.2766 1.5712 1.2535
0.0501 94.0 282 1.5738 0.2749 1.5738 1.2545
0.0501 94.6667 284 1.5536 0.2704 1.5536 1.2464
0.0501 95.3333 286 1.5227 0.2643 1.5227 1.2340
0.0501 96.0 288 1.5199 0.2684 1.5199 1.2329
0.0497 96.6667 290 1.5281 0.2695 1.5281 1.2362
0.0497 97.3333 292 1.5431 0.2651 1.5431 1.2422
0.0497 98.0 294 1.5367 0.2655 1.5367 1.2396
0.0497 98.6667 296 1.5256 0.2695 1.5256 1.2352
0.0497 99.3333 298 1.5134 0.2737 1.5134 1.2302
0.0512 100.0 300 1.5071 0.2737 1.5071 1.2277

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k4_task1_organization_fold0

Finetuned
(2422)
this model