ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold4
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6695
- Qwk: 0.0090
- Mse: 1.6695
- Rmse: 1.2921
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.6667 | 2 | 10.5988 | 0.0023 | 10.5988 | 3.2556 |
No log | 1.3333 | 4 | 9.5438 | 0.0005 | 9.5438 | 3.0893 |
No log | 2.0 | 6 | 7.9266 | 0.0 | 7.9266 | 2.8154 |
No log | 2.6667 | 8 | 6.1629 | 0.0 | 6.1629 | 2.4825 |
5.7044 | 3.3333 | 10 | 4.5874 | 0.0186 | 4.5874 | 2.1418 |
5.7044 | 4.0 | 12 | 4.1725 | 0.0315 | 4.1725 | 2.0427 |
5.7044 | 4.6667 | 14 | 2.6912 | -0.0034 | 2.6912 | 1.6405 |
5.7044 | 5.3333 | 16 | 2.0821 | 0.0953 | 2.0821 | 1.4430 |
5.7044 | 6.0 | 18 | 1.5019 | 0.0420 | 1.5019 | 1.2255 |
2.0115 | 6.6667 | 20 | 1.4309 | 0.0420 | 1.4309 | 1.1962 |
2.0115 | 7.3333 | 22 | 1.7121 | 0.0408 | 1.7121 | 1.3085 |
2.0115 | 8.0 | 24 | 1.6904 | 0.0344 | 1.6904 | 1.3002 |
2.0115 | 8.6667 | 26 | 1.5511 | 0.0317 | 1.5511 | 1.2455 |
2.0115 | 9.3333 | 28 | 1.4209 | 0.0317 | 1.4209 | 1.1920 |
1.8824 | 10.0 | 30 | 1.4146 | 0.0317 | 1.4146 | 1.1894 |
1.8824 | 10.6667 | 32 | 1.5123 | 0.0317 | 1.5123 | 1.2297 |
1.8824 | 11.3333 | 34 | 1.5810 | 0.0317 | 1.5810 | 1.2574 |
1.8824 | 12.0 | 36 | 1.7113 | 0.0331 | 1.7113 | 1.3082 |
1.8824 | 12.6667 | 38 | 1.6690 | 0.0280 | 1.6690 | 1.2919 |
1.6664 | 13.3333 | 40 | 1.6783 | 0.0331 | 1.6783 | 1.2955 |
1.6664 | 14.0 | 42 | 1.3630 | 0.0239 | 1.3630 | 1.1675 |
1.6664 | 14.6667 | 44 | 1.3497 | 0.0253 | 1.3497 | 1.1618 |
1.6664 | 15.3333 | 46 | 2.0739 | 0.0005 | 2.0739 | 1.4401 |
1.6664 | 16.0 | 48 | 2.2954 | -0.0288 | 2.2954 | 1.5151 |
1.5158 | 16.6667 | 50 | 1.6121 | 0.0136 | 1.6121 | 1.2697 |
1.5158 | 17.3333 | 52 | 1.6540 | 0.0077 | 1.6540 | 1.2861 |
1.5158 | 18.0 | 54 | 2.1624 | -0.0017 | 2.1624 | 1.4705 |
1.5158 | 18.6667 | 56 | 1.4823 | 0.0300 | 1.4823 | 1.2175 |
1.5158 | 19.3333 | 58 | 0.9635 | 0.1368 | 0.9635 | 0.9816 |
1.1275 | 20.0 | 60 | 1.1617 | 0.0615 | 1.1617 | 1.0778 |
1.1275 | 20.6667 | 62 | 2.4893 | -0.0226 | 2.4893 | 1.5778 |
1.1275 | 21.3333 | 64 | 2.0219 | 0.0207 | 2.0219 | 1.4219 |
1.1275 | 22.0 | 66 | 1.1316 | 0.0358 | 1.1316 | 1.0637 |
1.1275 | 22.6667 | 68 | 1.4830 | 0.0274 | 1.4830 | 1.2178 |
0.6554 | 23.3333 | 70 | 3.0604 | -0.0459 | 3.0604 | 1.7494 |
0.6554 | 24.0 | 72 | 2.1846 | -0.0054 | 2.1846 | 1.4781 |
0.6554 | 24.6667 | 74 | 1.1924 | 0.0076 | 1.1924 | 1.0920 |
0.6554 | 25.3333 | 76 | 1.4607 | -0.0033 | 1.4607 | 1.2086 |
0.6554 | 26.0 | 78 | 2.4428 | -0.0204 | 2.4428 | 1.5629 |
0.4807 | 26.6667 | 80 | 1.7171 | -0.0062 | 1.7171 | 1.3104 |
0.4807 | 27.3333 | 82 | 1.3570 | 0.0024 | 1.3570 | 1.1649 |
0.4807 | 28.0 | 84 | 1.9503 | -0.0194 | 1.9503 | 1.3965 |
0.4807 | 28.6667 | 86 | 1.6694 | -0.0232 | 1.6694 | 1.2921 |
0.4807 | 29.3333 | 88 | 1.4297 | -0.0291 | 1.4297 | 1.1957 |
0.2636 | 30.0 | 90 | 2.3734 | -0.0390 | 2.3734 | 1.5406 |
0.2636 | 30.6667 | 92 | 2.2928 | -0.0253 | 2.2928 | 1.5142 |
0.2636 | 31.3333 | 94 | 1.5061 | -0.0296 | 1.5061 | 1.2272 |
0.2636 | 32.0 | 96 | 1.7690 | -0.0368 | 1.7690 | 1.3300 |
0.2636 | 32.6667 | 98 | 1.7113 | -0.0436 | 1.7113 | 1.3082 |
0.2179 | 33.3333 | 100 | 1.5797 | -0.0220 | 1.5797 | 1.2569 |
0.2179 | 34.0 | 102 | 2.3265 | -0.0343 | 2.3265 | 1.5253 |
0.2179 | 34.6667 | 104 | 1.8528 | -0.0116 | 1.8528 | 1.3612 |
0.2179 | 35.3333 | 106 | 1.2853 | 0.0029 | 1.2853 | 1.1337 |
0.2179 | 36.0 | 108 | 1.6370 | -0.0003 | 1.6370 | 1.2794 |
0.2354 | 36.6667 | 110 | 2.1306 | -0.0450 | 2.1306 | 1.4597 |
0.2354 | 37.3333 | 112 | 1.5763 | -0.0043 | 1.5763 | 1.2555 |
0.2354 | 38.0 | 114 | 1.2895 | 0.0221 | 1.2895 | 1.1356 |
0.2354 | 38.6667 | 116 | 1.8594 | -0.0053 | 1.8594 | 1.3636 |
0.2354 | 39.3333 | 118 | 2.3424 | -0.0188 | 2.3424 | 1.5305 |
0.1866 | 40.0 | 120 | 1.6384 | 0.0274 | 1.6384 | 1.2800 |
0.1866 | 40.6667 | 122 | 1.5347 | 0.0309 | 1.5347 | 1.2388 |
0.1866 | 41.3333 | 124 | 1.6808 | 0.0158 | 1.6808 | 1.2964 |
0.1866 | 42.0 | 126 | 1.9078 | -0.0093 | 1.9078 | 1.3812 |
0.1866 | 42.6667 | 128 | 1.5209 | -0.0018 | 1.5209 | 1.2332 |
0.1327 | 43.3333 | 130 | 1.3266 | 0.0206 | 1.3266 | 1.1518 |
0.1327 | 44.0 | 132 | 1.8916 | -0.0048 | 1.8916 | 1.3753 |
0.1327 | 44.6667 | 134 | 1.9784 | 0.0031 | 1.9784 | 1.4065 |
0.1327 | 45.3333 | 136 | 1.6576 | -0.0080 | 1.6576 | 1.2875 |
0.1327 | 46.0 | 138 | 1.4757 | 0.0056 | 1.4757 | 1.2148 |
0.1257 | 46.6667 | 140 | 1.6314 | 0.0192 | 1.6314 | 1.2773 |
0.1257 | 47.3333 | 142 | 1.6237 | 0.0228 | 1.6237 | 1.2743 |
0.1257 | 48.0 | 144 | 1.5986 | 0.0129 | 1.5986 | 1.2644 |
0.1257 | 48.6667 | 146 | 1.7375 | 0.0002 | 1.7375 | 1.3181 |
0.1257 | 49.3333 | 148 | 1.5309 | 0.0028 | 1.5309 | 1.2373 |
0.0827 | 50.0 | 150 | 1.7916 | 0.0047 | 1.7916 | 1.3385 |
0.0827 | 50.6667 | 152 | 1.9833 | 0.0135 | 1.9833 | 1.4083 |
0.0827 | 51.3333 | 154 | 1.6587 | 0.0051 | 1.6587 | 1.2879 |
0.0827 | 52.0 | 156 | 1.3197 | 0.0339 | 1.3197 | 1.1488 |
0.0827 | 52.6667 | 158 | 1.5885 | 0.0188 | 1.5885 | 1.2604 |
0.1036 | 53.3333 | 160 | 2.1758 | 0.0146 | 2.1758 | 1.4751 |
0.1036 | 54.0 | 162 | 1.8611 | -0.0077 | 1.8611 | 1.3642 |
0.1036 | 54.6667 | 164 | 1.3877 | 0.0092 | 1.3877 | 1.1780 |
0.1036 | 55.3333 | 166 | 1.4176 | 0.0332 | 1.4176 | 1.1906 |
0.1036 | 56.0 | 168 | 1.8384 | 0.0106 | 1.8384 | 1.3559 |
0.1169 | 56.6667 | 170 | 1.7077 | -0.0020 | 1.7077 | 1.3068 |
0.1169 | 57.3333 | 172 | 1.5188 | 0.0142 | 1.5188 | 1.2324 |
0.1169 | 58.0 | 174 | 1.5466 | 0.0124 | 1.5466 | 1.2436 |
0.1169 | 58.6667 | 176 | 1.7099 | 0.0002 | 1.7099 | 1.3076 |
0.1169 | 59.3333 | 178 | 1.8646 | 0.0009 | 1.8646 | 1.3655 |
0.0701 | 60.0 | 180 | 1.8398 | -0.0012 | 1.8398 | 1.3564 |
0.0701 | 60.6667 | 182 | 1.6811 | 0.0117 | 1.6811 | 1.2966 |
0.0701 | 61.3333 | 184 | 1.7058 | -0.0095 | 1.7058 | 1.3061 |
0.0701 | 62.0 | 186 | 1.4829 | 0.0026 | 1.4829 | 1.2177 |
0.0701 | 62.6667 | 188 | 1.5136 | 0.0036 | 1.5136 | 1.2303 |
0.0897 | 63.3333 | 190 | 1.7987 | -0.0105 | 1.7987 | 1.3412 |
0.0897 | 64.0 | 192 | 1.6390 | 0.0103 | 1.6390 | 1.2802 |
0.0897 | 64.6667 | 194 | 1.6387 | 0.0112 | 1.6387 | 1.2801 |
0.0897 | 65.3333 | 196 | 1.5059 | 0.0080 | 1.5059 | 1.2272 |
0.0897 | 66.0 | 198 | 1.5833 | 0.0119 | 1.5833 | 1.2583 |
0.0856 | 66.6667 | 200 | 1.5582 | 0.0050 | 1.5582 | 1.2483 |
0.0856 | 67.3333 | 202 | 1.4557 | 0.0082 | 1.4557 | 1.2065 |
0.0856 | 68.0 | 204 | 1.7197 | 0.0070 | 1.7197 | 1.3114 |
0.0856 | 68.6667 | 206 | 1.6998 | 0.0085 | 1.6998 | 1.3038 |
0.0856 | 69.3333 | 208 | 1.5210 | 0.0014 | 1.5210 | 1.2333 |
0.0796 | 70.0 | 210 | 1.5423 | -0.0078 | 1.5423 | 1.2419 |
0.0796 | 70.6667 | 212 | 1.5661 | 0.0060 | 1.5661 | 1.2514 |
0.0796 | 71.3333 | 214 | 1.7493 | 0.0074 | 1.7493 | 1.3226 |
0.0796 | 72.0 | 216 | 1.6922 | 0.0200 | 1.6922 | 1.3008 |
0.0796 | 72.6667 | 218 | 1.4751 | 0.0040 | 1.4751 | 1.2145 |
0.0713 | 73.3333 | 220 | 1.3377 | 0.0061 | 1.3377 | 1.1566 |
0.0713 | 74.0 | 222 | 1.4249 | 0.0070 | 1.4249 | 1.1937 |
0.0713 | 74.6667 | 224 | 1.7430 | 0.0132 | 1.7430 | 1.3202 |
0.0713 | 75.3333 | 226 | 1.8524 | 0.0067 | 1.8524 | 1.3610 |
0.0713 | 76.0 | 228 | 1.7285 | 0.0155 | 1.7285 | 1.3147 |
0.0608 | 76.6667 | 230 | 1.6409 | 0.0295 | 1.6409 | 1.2810 |
0.0608 | 77.3333 | 232 | 1.5394 | 0.0114 | 1.5394 | 1.2407 |
0.0608 | 78.0 | 234 | 1.5399 | 0.0105 | 1.5399 | 1.2409 |
0.0608 | 78.6667 | 236 | 1.5815 | 0.0039 | 1.5815 | 1.2576 |
0.0608 | 79.3333 | 238 | 1.5948 | 0.0067 | 1.5948 | 1.2629 |
0.0529 | 80.0 | 240 | 1.5860 | 0.0226 | 1.5860 | 1.2594 |
0.0529 | 80.6667 | 242 | 1.5170 | 0.0238 | 1.5170 | 1.2316 |
0.0529 | 81.3333 | 244 | 1.4719 | 0.0250 | 1.4719 | 1.2132 |
0.0529 | 82.0 | 246 | 1.4999 | 0.0349 | 1.4999 | 1.2247 |
0.0529 | 82.6667 | 248 | 1.6012 | 0.0196 | 1.6012 | 1.2654 |
0.0479 | 83.3333 | 250 | 1.5851 | 0.0048 | 1.5851 | 1.2590 |
0.0479 | 84.0 | 252 | 1.5209 | 0.0139 | 1.5209 | 1.2332 |
0.0479 | 84.6667 | 254 | 1.5712 | -0.0030 | 1.5712 | 1.2535 |
0.0479 | 85.3333 | 256 | 1.5356 | 0.0094 | 1.5356 | 1.2392 |
0.0479 | 86.0 | 258 | 1.5277 | 0.0104 | 1.5277 | 1.2360 |
0.0507 | 86.6667 | 260 | 1.5911 | 0.0113 | 1.5911 | 1.2614 |
0.0507 | 87.3333 | 262 | 1.6339 | 0.0093 | 1.6339 | 1.2782 |
0.0507 | 88.0 | 264 | 1.5916 | 0.0150 | 1.5916 | 1.2616 |
0.0507 | 88.6667 | 266 | 1.5888 | 0.0127 | 1.5888 | 1.2605 |
0.0507 | 89.3333 | 268 | 1.5978 | 0.0136 | 1.5978 | 1.2640 |
0.0518 | 90.0 | 270 | 1.6048 | 0.0071 | 1.6048 | 1.2668 |
0.0518 | 90.6667 | 272 | 1.6775 | 0.0108 | 1.6775 | 1.2952 |
0.0518 | 91.3333 | 274 | 1.7382 | 0.0044 | 1.7382 | 1.3184 |
0.0518 | 92.0 | 276 | 1.7267 | 0.0044 | 1.7267 | 1.3140 |
0.0518 | 92.6667 | 278 | 1.6363 | 0.0084 | 1.6363 | 1.2792 |
0.0418 | 93.3333 | 280 | 1.5515 | 0.0065 | 1.5515 | 1.2456 |
0.0418 | 94.0 | 282 | 1.4887 | 0.0001 | 1.4887 | 1.2201 |
0.0418 | 94.6667 | 284 | 1.4783 | 0.0001 | 1.4783 | 1.2159 |
0.0418 | 95.3333 | 286 | 1.5102 | 0.0049 | 1.5102 | 1.2289 |
0.0418 | 96.0 | 288 | 1.5810 | 0.0152 | 1.5810 | 1.2574 |
0.0507 | 96.6667 | 290 | 1.6551 | 0.0064 | 1.6551 | 1.2865 |
0.0507 | 97.3333 | 292 | 1.7034 | -0.0024 | 1.7034 | 1.3051 |
0.0507 | 98.0 | 294 | 1.7112 | -0.0002 | 1.7112 | 1.3081 |
0.0507 | 98.6667 | 296 | 1.6976 | 0.0057 | 1.6976 | 1.3029 |
0.0507 | 99.3333 | 298 | 1.6793 | 0.0071 | 1.6793 | 1.2959 |
0.0378 | 100.0 | 300 | 1.6695 | 0.0090 | 1.6695 | 1.2921 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for genki10/ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold4
Base model
google-bert/bert-base-uncased