ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6695
  • Qwk: 0.0090
  • Mse: 1.6695
  • Rmse: 1.2921

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.6667 2 10.5988 0.0023 10.5988 3.2556
No log 1.3333 4 9.5438 0.0005 9.5438 3.0893
No log 2.0 6 7.9266 0.0 7.9266 2.8154
No log 2.6667 8 6.1629 0.0 6.1629 2.4825
5.7044 3.3333 10 4.5874 0.0186 4.5874 2.1418
5.7044 4.0 12 4.1725 0.0315 4.1725 2.0427
5.7044 4.6667 14 2.6912 -0.0034 2.6912 1.6405
5.7044 5.3333 16 2.0821 0.0953 2.0821 1.4430
5.7044 6.0 18 1.5019 0.0420 1.5019 1.2255
2.0115 6.6667 20 1.4309 0.0420 1.4309 1.1962
2.0115 7.3333 22 1.7121 0.0408 1.7121 1.3085
2.0115 8.0 24 1.6904 0.0344 1.6904 1.3002
2.0115 8.6667 26 1.5511 0.0317 1.5511 1.2455
2.0115 9.3333 28 1.4209 0.0317 1.4209 1.1920
1.8824 10.0 30 1.4146 0.0317 1.4146 1.1894
1.8824 10.6667 32 1.5123 0.0317 1.5123 1.2297
1.8824 11.3333 34 1.5810 0.0317 1.5810 1.2574
1.8824 12.0 36 1.7113 0.0331 1.7113 1.3082
1.8824 12.6667 38 1.6690 0.0280 1.6690 1.2919
1.6664 13.3333 40 1.6783 0.0331 1.6783 1.2955
1.6664 14.0 42 1.3630 0.0239 1.3630 1.1675
1.6664 14.6667 44 1.3497 0.0253 1.3497 1.1618
1.6664 15.3333 46 2.0739 0.0005 2.0739 1.4401
1.6664 16.0 48 2.2954 -0.0288 2.2954 1.5151
1.5158 16.6667 50 1.6121 0.0136 1.6121 1.2697
1.5158 17.3333 52 1.6540 0.0077 1.6540 1.2861
1.5158 18.0 54 2.1624 -0.0017 2.1624 1.4705
1.5158 18.6667 56 1.4823 0.0300 1.4823 1.2175
1.5158 19.3333 58 0.9635 0.1368 0.9635 0.9816
1.1275 20.0 60 1.1617 0.0615 1.1617 1.0778
1.1275 20.6667 62 2.4893 -0.0226 2.4893 1.5778
1.1275 21.3333 64 2.0219 0.0207 2.0219 1.4219
1.1275 22.0 66 1.1316 0.0358 1.1316 1.0637
1.1275 22.6667 68 1.4830 0.0274 1.4830 1.2178
0.6554 23.3333 70 3.0604 -0.0459 3.0604 1.7494
0.6554 24.0 72 2.1846 -0.0054 2.1846 1.4781
0.6554 24.6667 74 1.1924 0.0076 1.1924 1.0920
0.6554 25.3333 76 1.4607 -0.0033 1.4607 1.2086
0.6554 26.0 78 2.4428 -0.0204 2.4428 1.5629
0.4807 26.6667 80 1.7171 -0.0062 1.7171 1.3104
0.4807 27.3333 82 1.3570 0.0024 1.3570 1.1649
0.4807 28.0 84 1.9503 -0.0194 1.9503 1.3965
0.4807 28.6667 86 1.6694 -0.0232 1.6694 1.2921
0.4807 29.3333 88 1.4297 -0.0291 1.4297 1.1957
0.2636 30.0 90 2.3734 -0.0390 2.3734 1.5406
0.2636 30.6667 92 2.2928 -0.0253 2.2928 1.5142
0.2636 31.3333 94 1.5061 -0.0296 1.5061 1.2272
0.2636 32.0 96 1.7690 -0.0368 1.7690 1.3300
0.2636 32.6667 98 1.7113 -0.0436 1.7113 1.3082
0.2179 33.3333 100 1.5797 -0.0220 1.5797 1.2569
0.2179 34.0 102 2.3265 -0.0343 2.3265 1.5253
0.2179 34.6667 104 1.8528 -0.0116 1.8528 1.3612
0.2179 35.3333 106 1.2853 0.0029 1.2853 1.1337
0.2179 36.0 108 1.6370 -0.0003 1.6370 1.2794
0.2354 36.6667 110 2.1306 -0.0450 2.1306 1.4597
0.2354 37.3333 112 1.5763 -0.0043 1.5763 1.2555
0.2354 38.0 114 1.2895 0.0221 1.2895 1.1356
0.2354 38.6667 116 1.8594 -0.0053 1.8594 1.3636
0.2354 39.3333 118 2.3424 -0.0188 2.3424 1.5305
0.1866 40.0 120 1.6384 0.0274 1.6384 1.2800
0.1866 40.6667 122 1.5347 0.0309 1.5347 1.2388
0.1866 41.3333 124 1.6808 0.0158 1.6808 1.2964
0.1866 42.0 126 1.9078 -0.0093 1.9078 1.3812
0.1866 42.6667 128 1.5209 -0.0018 1.5209 1.2332
0.1327 43.3333 130 1.3266 0.0206 1.3266 1.1518
0.1327 44.0 132 1.8916 -0.0048 1.8916 1.3753
0.1327 44.6667 134 1.9784 0.0031 1.9784 1.4065
0.1327 45.3333 136 1.6576 -0.0080 1.6576 1.2875
0.1327 46.0 138 1.4757 0.0056 1.4757 1.2148
0.1257 46.6667 140 1.6314 0.0192 1.6314 1.2773
0.1257 47.3333 142 1.6237 0.0228 1.6237 1.2743
0.1257 48.0 144 1.5986 0.0129 1.5986 1.2644
0.1257 48.6667 146 1.7375 0.0002 1.7375 1.3181
0.1257 49.3333 148 1.5309 0.0028 1.5309 1.2373
0.0827 50.0 150 1.7916 0.0047 1.7916 1.3385
0.0827 50.6667 152 1.9833 0.0135 1.9833 1.4083
0.0827 51.3333 154 1.6587 0.0051 1.6587 1.2879
0.0827 52.0 156 1.3197 0.0339 1.3197 1.1488
0.0827 52.6667 158 1.5885 0.0188 1.5885 1.2604
0.1036 53.3333 160 2.1758 0.0146 2.1758 1.4751
0.1036 54.0 162 1.8611 -0.0077 1.8611 1.3642
0.1036 54.6667 164 1.3877 0.0092 1.3877 1.1780
0.1036 55.3333 166 1.4176 0.0332 1.4176 1.1906
0.1036 56.0 168 1.8384 0.0106 1.8384 1.3559
0.1169 56.6667 170 1.7077 -0.0020 1.7077 1.3068
0.1169 57.3333 172 1.5188 0.0142 1.5188 1.2324
0.1169 58.0 174 1.5466 0.0124 1.5466 1.2436
0.1169 58.6667 176 1.7099 0.0002 1.7099 1.3076
0.1169 59.3333 178 1.8646 0.0009 1.8646 1.3655
0.0701 60.0 180 1.8398 -0.0012 1.8398 1.3564
0.0701 60.6667 182 1.6811 0.0117 1.6811 1.2966
0.0701 61.3333 184 1.7058 -0.0095 1.7058 1.3061
0.0701 62.0 186 1.4829 0.0026 1.4829 1.2177
0.0701 62.6667 188 1.5136 0.0036 1.5136 1.2303
0.0897 63.3333 190 1.7987 -0.0105 1.7987 1.3412
0.0897 64.0 192 1.6390 0.0103 1.6390 1.2802
0.0897 64.6667 194 1.6387 0.0112 1.6387 1.2801
0.0897 65.3333 196 1.5059 0.0080 1.5059 1.2272
0.0897 66.0 198 1.5833 0.0119 1.5833 1.2583
0.0856 66.6667 200 1.5582 0.0050 1.5582 1.2483
0.0856 67.3333 202 1.4557 0.0082 1.4557 1.2065
0.0856 68.0 204 1.7197 0.0070 1.7197 1.3114
0.0856 68.6667 206 1.6998 0.0085 1.6998 1.3038
0.0856 69.3333 208 1.5210 0.0014 1.5210 1.2333
0.0796 70.0 210 1.5423 -0.0078 1.5423 1.2419
0.0796 70.6667 212 1.5661 0.0060 1.5661 1.2514
0.0796 71.3333 214 1.7493 0.0074 1.7493 1.3226
0.0796 72.0 216 1.6922 0.0200 1.6922 1.3008
0.0796 72.6667 218 1.4751 0.0040 1.4751 1.2145
0.0713 73.3333 220 1.3377 0.0061 1.3377 1.1566
0.0713 74.0 222 1.4249 0.0070 1.4249 1.1937
0.0713 74.6667 224 1.7430 0.0132 1.7430 1.3202
0.0713 75.3333 226 1.8524 0.0067 1.8524 1.3610
0.0713 76.0 228 1.7285 0.0155 1.7285 1.3147
0.0608 76.6667 230 1.6409 0.0295 1.6409 1.2810
0.0608 77.3333 232 1.5394 0.0114 1.5394 1.2407
0.0608 78.0 234 1.5399 0.0105 1.5399 1.2409
0.0608 78.6667 236 1.5815 0.0039 1.5815 1.2576
0.0608 79.3333 238 1.5948 0.0067 1.5948 1.2629
0.0529 80.0 240 1.5860 0.0226 1.5860 1.2594
0.0529 80.6667 242 1.5170 0.0238 1.5170 1.2316
0.0529 81.3333 244 1.4719 0.0250 1.4719 1.2132
0.0529 82.0 246 1.4999 0.0349 1.4999 1.2247
0.0529 82.6667 248 1.6012 0.0196 1.6012 1.2654
0.0479 83.3333 250 1.5851 0.0048 1.5851 1.2590
0.0479 84.0 252 1.5209 0.0139 1.5209 1.2332
0.0479 84.6667 254 1.5712 -0.0030 1.5712 1.2535
0.0479 85.3333 256 1.5356 0.0094 1.5356 1.2392
0.0479 86.0 258 1.5277 0.0104 1.5277 1.2360
0.0507 86.6667 260 1.5911 0.0113 1.5911 1.2614
0.0507 87.3333 262 1.6339 0.0093 1.6339 1.2782
0.0507 88.0 264 1.5916 0.0150 1.5916 1.2616
0.0507 88.6667 266 1.5888 0.0127 1.5888 1.2605
0.0507 89.3333 268 1.5978 0.0136 1.5978 1.2640
0.0518 90.0 270 1.6048 0.0071 1.6048 1.2668
0.0518 90.6667 272 1.6775 0.0108 1.6775 1.2952
0.0518 91.3333 274 1.7382 0.0044 1.7382 1.3184
0.0518 92.0 276 1.7267 0.0044 1.7267 1.3140
0.0518 92.6667 278 1.6363 0.0084 1.6363 1.2792
0.0418 93.3333 280 1.5515 0.0065 1.5515 1.2456
0.0418 94.0 282 1.4887 0.0001 1.4887 1.2201
0.0418 94.6667 284 1.4783 0.0001 1.4783 1.2159
0.0418 95.3333 286 1.5102 0.0049 1.5102 1.2289
0.0418 96.0 288 1.5810 0.0152 1.5810 1.2574
0.0507 96.6667 290 1.6551 0.0064 1.6551 1.2865
0.0507 97.3333 292 1.7034 -0.0024 1.7034 1.3051
0.0507 98.0 294 1.7112 -0.0002 1.7112 1.3081
0.0507 98.6667 296 1.6976 0.0057 1.6976 1.3029
0.0507 99.3333 298 1.6793 0.0071 1.6793 1.2959
0.0378 100.0 300 1.6695 0.0090 1.6695 1.2921

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold4

Finetuned
(2422)
this model