ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6350
- Qwk: 0.0231
- Mse: 1.6358
- Rmse: 1.2790
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.6667 | 2 | 10.6776 | 0.0053 | 10.6773 | 3.2676 |
No log | 1.3333 | 4 | 9.6584 | 0.0 | 9.6582 | 3.1078 |
No log | 2.0 | 6 | 8.0731 | 0.0 | 8.0729 | 2.8413 |
No log | 2.6667 | 8 | 6.2575 | -0.0002 | 6.2573 | 2.5015 |
5.7197 | 3.3333 | 10 | 4.5734 | 0.0078 | 4.5733 | 2.1385 |
5.7197 | 4.0 | 12 | 3.4588 | 0.0 | 3.4589 | 1.8598 |
5.7197 | 4.6667 | 14 | 2.5682 | 0.0585 | 2.5684 | 1.6026 |
5.7197 | 5.3333 | 16 | 1.7364 | 0.0677 | 1.7365 | 1.3178 |
5.7197 | 6.0 | 18 | 1.7835 | 0.0257 | 1.7838 | 1.3356 |
1.9116 | 6.6667 | 20 | 2.0227 | 0.0403 | 2.0230 | 1.4223 |
1.9116 | 7.3333 | 22 | 1.8080 | 0.0192 | 1.8082 | 1.3447 |
1.9116 | 8.0 | 24 | 1.3627 | 0.0107 | 1.3629 | 1.1674 |
1.9116 | 8.6667 | 26 | 1.5512 | 0.0107 | 1.5514 | 1.2456 |
1.9116 | 9.3333 | 28 | 1.6988 | 0.0174 | 1.6990 | 1.3035 |
1.8858 | 10.0 | 30 | 1.8267 | 0.0466 | 1.8269 | 1.3516 |
1.8858 | 10.6667 | 32 | 1.8717 | 0.0454 | 1.8719 | 1.3682 |
1.8858 | 11.3333 | 34 | 1.6450 | 0.0349 | 1.6452 | 1.2827 |
1.8858 | 12.0 | 36 | 1.3104 | 0.0107 | 1.3106 | 1.1448 |
1.8858 | 12.6667 | 38 | 1.5374 | 0.0491 | 1.5376 | 1.2400 |
1.6052 | 13.3333 | 40 | 2.2800 | 0.0388 | 2.2803 | 1.5101 |
1.6052 | 14.0 | 42 | 1.9449 | 0.0670 | 1.9452 | 1.3947 |
1.6052 | 14.6667 | 44 | 1.2323 | 0.0107 | 1.2327 | 1.1103 |
1.6052 | 15.3333 | 46 | 1.1505 | 0.0 | 1.1509 | 1.0728 |
1.6052 | 16.0 | 48 | 1.7654 | 0.0507 | 1.7660 | 1.3289 |
1.429 | 16.6667 | 50 | 2.1183 | -0.0005 | 2.1191 | 1.4557 |
1.429 | 17.3333 | 52 | 2.2957 | -0.0026 | 2.2967 | 1.5155 |
1.429 | 18.0 | 54 | 1.1098 | 0.0662 | 1.1103 | 1.0537 |
1.429 | 18.6667 | 56 | 1.0314 | 0.1392 | 1.0319 | 1.0158 |
1.429 | 19.3333 | 58 | 2.2284 | -0.0068 | 2.2293 | 1.4931 |
0.9294 | 20.0 | 60 | 2.6028 | -0.0152 | 2.6038 | 1.6136 |
0.9294 | 20.6667 | 62 | 1.1656 | 0.0970 | 1.1662 | 1.0799 |
0.9294 | 21.3333 | 64 | 0.9419 | 0.1628 | 0.9424 | 0.9708 |
0.9294 | 22.0 | 66 | 1.6367 | 0.0425 | 1.6372 | 1.2795 |
0.9294 | 22.6667 | 68 | 1.8437 | 0.0518 | 1.8443 | 1.3581 |
0.7127 | 23.3333 | 70 | 1.6525 | 0.0670 | 1.6532 | 1.2858 |
0.7127 | 24.0 | 72 | 1.3043 | 0.1307 | 1.3052 | 1.1424 |
0.7127 | 24.6667 | 74 | 1.9452 | 0.0551 | 1.9465 | 1.3952 |
0.7127 | 25.3333 | 76 | 2.4381 | 0.0213 | 2.4396 | 1.5619 |
0.7127 | 26.0 | 78 | 1.1106 | 0.1370 | 1.1113 | 1.0542 |
0.3668 | 26.6667 | 80 | 1.0245 | 0.1503 | 1.0250 | 1.0124 |
0.3668 | 27.3333 | 82 | 2.1971 | 0.0312 | 2.1977 | 1.4825 |
0.3668 | 28.0 | 84 | 2.6842 | 0.0187 | 2.6847 | 1.6385 |
0.3668 | 28.6667 | 86 | 1.4333 | 0.1130 | 1.4337 | 1.1974 |
0.3668 | 29.3333 | 88 | 0.8502 | 0.2100 | 0.8506 | 0.9223 |
0.4568 | 30.0 | 90 | 0.9749 | 0.1675 | 0.9753 | 0.9876 |
0.4568 | 30.6667 | 92 | 2.2086 | 0.0165 | 2.2092 | 1.4863 |
0.4568 | 31.3333 | 94 | 3.1041 | -0.0050 | 3.1047 | 1.7620 |
0.4568 | 32.0 | 96 | 2.0165 | 0.0256 | 2.0170 | 1.4202 |
0.4568 | 32.6667 | 98 | 1.1154 | 0.1198 | 1.1158 | 1.0563 |
0.3555 | 33.3333 | 100 | 1.2009 | 0.1115 | 1.2013 | 1.0960 |
0.3555 | 34.0 | 102 | 2.1893 | 0.0266 | 2.1898 | 1.4798 |
0.3555 | 34.6667 | 104 | 2.3605 | 0.0126 | 2.3611 | 1.5366 |
0.3555 | 35.3333 | 106 | 1.4395 | 0.0934 | 1.4401 | 1.2000 |
0.3555 | 36.0 | 108 | 1.2613 | 0.1159 | 1.2620 | 1.1234 |
0.2402 | 36.6667 | 110 | 2.0099 | 0.0293 | 2.0108 | 1.4180 |
0.2402 | 37.3333 | 112 | 2.1534 | 0.0288 | 2.1544 | 1.4678 |
0.2402 | 38.0 | 114 | 1.2821 | 0.1390 | 1.2829 | 1.1327 |
0.2402 | 38.6667 | 116 | 1.1801 | 0.1393 | 1.1809 | 1.0867 |
0.2402 | 39.3333 | 118 | 1.8533 | 0.0535 | 1.8542 | 1.3617 |
0.2142 | 40.0 | 120 | 2.0515 | 0.0336 | 2.0524 | 1.4326 |
0.2142 | 40.6667 | 122 | 1.3143 | 0.1374 | 1.3150 | 1.1467 |
0.2142 | 41.3333 | 124 | 1.2383 | 0.1412 | 1.2390 | 1.1131 |
0.2142 | 42.0 | 126 | 1.8776 | 0.0621 | 1.8783 | 1.3705 |
0.2142 | 42.6667 | 128 | 1.9049 | 0.0524 | 1.9055 | 1.3804 |
0.1439 | 43.3333 | 130 | 1.4200 | 0.0828 | 1.4207 | 1.1919 |
0.1439 | 44.0 | 132 | 1.6179 | 0.0593 | 1.6187 | 1.2723 |
0.1439 | 44.6667 | 134 | 2.0902 | 0.0078 | 2.0910 | 1.4460 |
0.1439 | 45.3333 | 136 | 1.7861 | 0.0394 | 1.7869 | 1.3368 |
0.1439 | 46.0 | 138 | 1.2555 | 0.0945 | 1.2562 | 1.1208 |
0.1369 | 46.6667 | 140 | 1.4760 | 0.0500 | 1.4768 | 1.2153 |
0.1369 | 47.3333 | 142 | 2.0689 | 0.0107 | 2.0698 | 1.4387 |
0.1369 | 48.0 | 144 | 1.9455 | 0.0218 | 1.9465 | 1.3952 |
0.1369 | 48.6667 | 146 | 1.2911 | 0.0858 | 1.2919 | 1.1366 |
0.1369 | 49.3333 | 148 | 1.0887 | 0.1198 | 1.0893 | 1.0437 |
0.1239 | 50.0 | 150 | 1.3433 | 0.0692 | 1.3440 | 1.1593 |
0.1239 | 50.6667 | 152 | 2.1301 | 0.0243 | 2.1308 | 1.4597 |
0.1239 | 51.3333 | 154 | 2.2765 | 0.0132 | 2.2772 | 1.5090 |
0.1239 | 52.0 | 156 | 1.6208 | 0.0387 | 1.6215 | 1.2734 |
0.1239 | 52.6667 | 158 | 1.3080 | 0.0905 | 1.3086 | 1.1439 |
0.1216 | 53.3333 | 160 | 1.5683 | 0.0510 | 1.5690 | 1.2526 |
0.1216 | 54.0 | 162 | 2.2286 | 0.0142 | 2.2293 | 1.4931 |
0.1216 | 54.6667 | 164 | 2.1217 | 0.0210 | 2.1223 | 1.4568 |
0.1216 | 55.3333 | 166 | 1.4775 | 0.0592 | 1.4782 | 1.2158 |
0.1216 | 56.0 | 168 | 1.2821 | 0.1022 | 1.2829 | 1.1326 |
0.1233 | 56.6667 | 170 | 1.5417 | 0.0591 | 1.5424 | 1.2419 |
0.1233 | 57.3333 | 172 | 1.9744 | 0.0193 | 1.9751 | 1.4054 |
0.1233 | 58.0 | 174 | 1.7540 | 0.0203 | 1.7547 | 1.3247 |
0.1233 | 58.6667 | 176 | 1.4000 | 0.0517 | 1.4007 | 1.1835 |
0.1233 | 59.3333 | 178 | 1.5599 | 0.0486 | 1.5607 | 1.2493 |
0.0843 | 60.0 | 180 | 1.8944 | 0.0218 | 1.8952 | 1.3766 |
0.0843 | 60.6667 | 182 | 1.7514 | 0.0288 | 1.7521 | 1.3237 |
0.0843 | 61.3333 | 184 | 1.5121 | 0.0417 | 1.5128 | 1.2299 |
0.0843 | 62.0 | 186 | 1.5184 | 0.0352 | 1.5191 | 1.2325 |
0.0843 | 62.6667 | 188 | 1.7764 | 0.0183 | 1.7771 | 1.3331 |
0.067 | 63.3333 | 190 | 1.8498 | 0.0086 | 1.8505 | 1.3603 |
0.067 | 64.0 | 192 | 1.5320 | 0.0320 | 1.5326 | 1.2380 |
0.067 | 64.6667 | 194 | 1.5265 | 0.0244 | 1.5272 | 1.2358 |
0.067 | 65.3333 | 196 | 1.6956 | 0.0212 | 1.6962 | 1.3024 |
0.067 | 66.0 | 198 | 1.5750 | 0.0455 | 1.5756 | 1.2552 |
0.0939 | 66.6667 | 200 | 1.6177 | 0.0396 | 1.6183 | 1.2721 |
0.0939 | 67.3333 | 202 | 1.5220 | 0.0468 | 1.5226 | 1.2339 |
0.0939 | 68.0 | 204 | 1.7128 | 0.0348 | 1.7135 | 1.3090 |
0.0939 | 68.6667 | 206 | 1.9817 | 0.0365 | 1.9824 | 1.4080 |
0.0939 | 69.3333 | 208 | 1.7176 | 0.0386 | 1.7183 | 1.3108 |
0.0893 | 70.0 | 210 | 1.3721 | 0.0592 | 1.3728 | 1.1717 |
0.0893 | 70.6667 | 212 | 1.4323 | 0.0479 | 1.4330 | 1.1971 |
0.0893 | 71.3333 | 214 | 1.6648 | 0.0414 | 1.6654 | 1.2905 |
0.0893 | 72.0 | 216 | 1.5868 | 0.0231 | 1.5875 | 1.2600 |
0.0893 | 72.6667 | 218 | 1.3284 | 0.0744 | 1.3292 | 1.1529 |
0.0688 | 73.3333 | 220 | 1.2438 | 0.1206 | 1.2446 | 1.1156 |
0.0688 | 74.0 | 222 | 1.4085 | 0.0761 | 1.4093 | 1.1871 |
0.0688 | 74.6667 | 224 | 1.8282 | 0.0285 | 1.8290 | 1.3524 |
0.0688 | 75.3333 | 226 | 2.2591 | 0.0361 | 2.2599 | 1.5033 |
0.0688 | 76.0 | 228 | 2.2099 | 0.0349 | 2.2106 | 1.4868 |
0.0942 | 76.6667 | 230 | 1.8292 | 0.0190 | 1.8299 | 1.3527 |
0.0942 | 77.3333 | 232 | 1.4962 | 0.0331 | 1.4969 | 1.2235 |
0.0942 | 78.0 | 234 | 1.3329 | 0.0764 | 1.3336 | 1.1548 |
0.0942 | 78.6667 | 236 | 1.4241 | 0.0604 | 1.4248 | 1.1937 |
0.0942 | 79.3333 | 238 | 1.7210 | 0.0070 | 1.7217 | 1.3121 |
0.069 | 80.0 | 240 | 1.8527 | 0.0099 | 1.8534 | 1.3614 |
0.069 | 80.6667 | 242 | 1.6912 | 0.0163 | 1.6919 | 1.3007 |
0.069 | 81.3333 | 244 | 1.5813 | 0.0285 | 1.5820 | 1.2578 |
0.069 | 82.0 | 246 | 1.5497 | 0.0176 | 1.5504 | 1.2452 |
0.069 | 82.6667 | 248 | 1.6654 | 0.0276 | 1.6662 | 1.2908 |
0.0599 | 83.3333 | 250 | 1.6289 | 0.0167 | 1.6297 | 1.2766 |
0.0599 | 84.0 | 252 | 1.5533 | 0.0376 | 1.5541 | 1.2466 |
0.0599 | 84.6667 | 254 | 1.5454 | 0.0400 | 1.5462 | 1.2435 |
0.0599 | 85.3333 | 256 | 1.5764 | 0.0277 | 1.5771 | 1.2558 |
0.0599 | 86.0 | 258 | 1.5978 | 0.0233 | 1.5986 | 1.2643 |
0.0523 | 86.6667 | 260 | 1.5541 | 0.0269 | 1.5549 | 1.2470 |
0.0523 | 87.3333 | 262 | 1.5125 | 0.0371 | 1.5133 | 1.2301 |
0.0523 | 88.0 | 264 | 1.4808 | 0.0236 | 1.4816 | 1.2172 |
0.0523 | 88.6667 | 266 | 1.5303 | 0.0261 | 1.5310 | 1.2374 |
0.0523 | 89.3333 | 268 | 1.5621 | 0.0240 | 1.5630 | 1.2502 |
0.0658 | 90.0 | 270 | 1.6408 | 0.0075 | 1.6417 | 1.2813 |
0.0658 | 90.6667 | 272 | 1.6875 | 0.0074 | 1.6884 | 1.2994 |
0.0658 | 91.3333 | 274 | 1.6678 | 0.0067 | 1.6686 | 1.2918 |
0.0658 | 92.0 | 276 | 1.6405 | 0.0114 | 1.6414 | 1.2812 |
0.0658 | 92.6667 | 278 | 1.5920 | 0.0265 | 1.5928 | 1.2621 |
0.0493 | 93.3333 | 280 | 1.5526 | 0.0190 | 1.5534 | 1.2464 |
0.0493 | 94.0 | 282 | 1.4926 | 0.0157 | 1.4934 | 1.2220 |
0.0493 | 94.6667 | 284 | 1.4909 | 0.0157 | 1.4918 | 1.2214 |
0.0493 | 95.3333 | 286 | 1.4998 | 0.0131 | 1.5006 | 1.2250 |
0.0493 | 96.0 | 288 | 1.5467 | 0.0224 | 1.5475 | 1.2440 |
0.0602 | 96.6667 | 290 | 1.6004 | 0.0208 | 1.6012 | 1.2654 |
0.0602 | 97.3333 | 292 | 1.6359 | 0.0121 | 1.6367 | 1.2793 |
0.0602 | 98.0 | 294 | 1.6481 | 0.0144 | 1.6490 | 1.2841 |
0.0602 | 98.6667 | 296 | 1.6502 | 0.0136 | 1.6510 | 1.2849 |
0.0602 | 99.3333 | 298 | 1.6409 | 0.0222 | 1.6417 | 1.2813 |
0.0521 | 100.0 | 300 | 1.6350 | 0.0231 | 1.6358 | 1.2790 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for genki10/ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold2
Base model
google-bert/bert-base-uncased