ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6350
  • Qwk: 0.0231
  • Mse: 1.6358
  • Rmse: 1.2790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.6667 2 10.6776 0.0053 10.6773 3.2676
No log 1.3333 4 9.6584 0.0 9.6582 3.1078
No log 2.0 6 8.0731 0.0 8.0729 2.8413
No log 2.6667 8 6.2575 -0.0002 6.2573 2.5015
5.7197 3.3333 10 4.5734 0.0078 4.5733 2.1385
5.7197 4.0 12 3.4588 0.0 3.4589 1.8598
5.7197 4.6667 14 2.5682 0.0585 2.5684 1.6026
5.7197 5.3333 16 1.7364 0.0677 1.7365 1.3178
5.7197 6.0 18 1.7835 0.0257 1.7838 1.3356
1.9116 6.6667 20 2.0227 0.0403 2.0230 1.4223
1.9116 7.3333 22 1.8080 0.0192 1.8082 1.3447
1.9116 8.0 24 1.3627 0.0107 1.3629 1.1674
1.9116 8.6667 26 1.5512 0.0107 1.5514 1.2456
1.9116 9.3333 28 1.6988 0.0174 1.6990 1.3035
1.8858 10.0 30 1.8267 0.0466 1.8269 1.3516
1.8858 10.6667 32 1.8717 0.0454 1.8719 1.3682
1.8858 11.3333 34 1.6450 0.0349 1.6452 1.2827
1.8858 12.0 36 1.3104 0.0107 1.3106 1.1448
1.8858 12.6667 38 1.5374 0.0491 1.5376 1.2400
1.6052 13.3333 40 2.2800 0.0388 2.2803 1.5101
1.6052 14.0 42 1.9449 0.0670 1.9452 1.3947
1.6052 14.6667 44 1.2323 0.0107 1.2327 1.1103
1.6052 15.3333 46 1.1505 0.0 1.1509 1.0728
1.6052 16.0 48 1.7654 0.0507 1.7660 1.3289
1.429 16.6667 50 2.1183 -0.0005 2.1191 1.4557
1.429 17.3333 52 2.2957 -0.0026 2.2967 1.5155
1.429 18.0 54 1.1098 0.0662 1.1103 1.0537
1.429 18.6667 56 1.0314 0.1392 1.0319 1.0158
1.429 19.3333 58 2.2284 -0.0068 2.2293 1.4931
0.9294 20.0 60 2.6028 -0.0152 2.6038 1.6136
0.9294 20.6667 62 1.1656 0.0970 1.1662 1.0799
0.9294 21.3333 64 0.9419 0.1628 0.9424 0.9708
0.9294 22.0 66 1.6367 0.0425 1.6372 1.2795
0.9294 22.6667 68 1.8437 0.0518 1.8443 1.3581
0.7127 23.3333 70 1.6525 0.0670 1.6532 1.2858
0.7127 24.0 72 1.3043 0.1307 1.3052 1.1424
0.7127 24.6667 74 1.9452 0.0551 1.9465 1.3952
0.7127 25.3333 76 2.4381 0.0213 2.4396 1.5619
0.7127 26.0 78 1.1106 0.1370 1.1113 1.0542
0.3668 26.6667 80 1.0245 0.1503 1.0250 1.0124
0.3668 27.3333 82 2.1971 0.0312 2.1977 1.4825
0.3668 28.0 84 2.6842 0.0187 2.6847 1.6385
0.3668 28.6667 86 1.4333 0.1130 1.4337 1.1974
0.3668 29.3333 88 0.8502 0.2100 0.8506 0.9223
0.4568 30.0 90 0.9749 0.1675 0.9753 0.9876
0.4568 30.6667 92 2.2086 0.0165 2.2092 1.4863
0.4568 31.3333 94 3.1041 -0.0050 3.1047 1.7620
0.4568 32.0 96 2.0165 0.0256 2.0170 1.4202
0.4568 32.6667 98 1.1154 0.1198 1.1158 1.0563
0.3555 33.3333 100 1.2009 0.1115 1.2013 1.0960
0.3555 34.0 102 2.1893 0.0266 2.1898 1.4798
0.3555 34.6667 104 2.3605 0.0126 2.3611 1.5366
0.3555 35.3333 106 1.4395 0.0934 1.4401 1.2000
0.3555 36.0 108 1.2613 0.1159 1.2620 1.1234
0.2402 36.6667 110 2.0099 0.0293 2.0108 1.4180
0.2402 37.3333 112 2.1534 0.0288 2.1544 1.4678
0.2402 38.0 114 1.2821 0.1390 1.2829 1.1327
0.2402 38.6667 116 1.1801 0.1393 1.1809 1.0867
0.2402 39.3333 118 1.8533 0.0535 1.8542 1.3617
0.2142 40.0 120 2.0515 0.0336 2.0524 1.4326
0.2142 40.6667 122 1.3143 0.1374 1.3150 1.1467
0.2142 41.3333 124 1.2383 0.1412 1.2390 1.1131
0.2142 42.0 126 1.8776 0.0621 1.8783 1.3705
0.2142 42.6667 128 1.9049 0.0524 1.9055 1.3804
0.1439 43.3333 130 1.4200 0.0828 1.4207 1.1919
0.1439 44.0 132 1.6179 0.0593 1.6187 1.2723
0.1439 44.6667 134 2.0902 0.0078 2.0910 1.4460
0.1439 45.3333 136 1.7861 0.0394 1.7869 1.3368
0.1439 46.0 138 1.2555 0.0945 1.2562 1.1208
0.1369 46.6667 140 1.4760 0.0500 1.4768 1.2153
0.1369 47.3333 142 2.0689 0.0107 2.0698 1.4387
0.1369 48.0 144 1.9455 0.0218 1.9465 1.3952
0.1369 48.6667 146 1.2911 0.0858 1.2919 1.1366
0.1369 49.3333 148 1.0887 0.1198 1.0893 1.0437
0.1239 50.0 150 1.3433 0.0692 1.3440 1.1593
0.1239 50.6667 152 2.1301 0.0243 2.1308 1.4597
0.1239 51.3333 154 2.2765 0.0132 2.2772 1.5090
0.1239 52.0 156 1.6208 0.0387 1.6215 1.2734
0.1239 52.6667 158 1.3080 0.0905 1.3086 1.1439
0.1216 53.3333 160 1.5683 0.0510 1.5690 1.2526
0.1216 54.0 162 2.2286 0.0142 2.2293 1.4931
0.1216 54.6667 164 2.1217 0.0210 2.1223 1.4568
0.1216 55.3333 166 1.4775 0.0592 1.4782 1.2158
0.1216 56.0 168 1.2821 0.1022 1.2829 1.1326
0.1233 56.6667 170 1.5417 0.0591 1.5424 1.2419
0.1233 57.3333 172 1.9744 0.0193 1.9751 1.4054
0.1233 58.0 174 1.7540 0.0203 1.7547 1.3247
0.1233 58.6667 176 1.4000 0.0517 1.4007 1.1835
0.1233 59.3333 178 1.5599 0.0486 1.5607 1.2493
0.0843 60.0 180 1.8944 0.0218 1.8952 1.3766
0.0843 60.6667 182 1.7514 0.0288 1.7521 1.3237
0.0843 61.3333 184 1.5121 0.0417 1.5128 1.2299
0.0843 62.0 186 1.5184 0.0352 1.5191 1.2325
0.0843 62.6667 188 1.7764 0.0183 1.7771 1.3331
0.067 63.3333 190 1.8498 0.0086 1.8505 1.3603
0.067 64.0 192 1.5320 0.0320 1.5326 1.2380
0.067 64.6667 194 1.5265 0.0244 1.5272 1.2358
0.067 65.3333 196 1.6956 0.0212 1.6962 1.3024
0.067 66.0 198 1.5750 0.0455 1.5756 1.2552
0.0939 66.6667 200 1.6177 0.0396 1.6183 1.2721
0.0939 67.3333 202 1.5220 0.0468 1.5226 1.2339
0.0939 68.0 204 1.7128 0.0348 1.7135 1.3090
0.0939 68.6667 206 1.9817 0.0365 1.9824 1.4080
0.0939 69.3333 208 1.7176 0.0386 1.7183 1.3108
0.0893 70.0 210 1.3721 0.0592 1.3728 1.1717
0.0893 70.6667 212 1.4323 0.0479 1.4330 1.1971
0.0893 71.3333 214 1.6648 0.0414 1.6654 1.2905
0.0893 72.0 216 1.5868 0.0231 1.5875 1.2600
0.0893 72.6667 218 1.3284 0.0744 1.3292 1.1529
0.0688 73.3333 220 1.2438 0.1206 1.2446 1.1156
0.0688 74.0 222 1.4085 0.0761 1.4093 1.1871
0.0688 74.6667 224 1.8282 0.0285 1.8290 1.3524
0.0688 75.3333 226 2.2591 0.0361 2.2599 1.5033
0.0688 76.0 228 2.2099 0.0349 2.2106 1.4868
0.0942 76.6667 230 1.8292 0.0190 1.8299 1.3527
0.0942 77.3333 232 1.4962 0.0331 1.4969 1.2235
0.0942 78.0 234 1.3329 0.0764 1.3336 1.1548
0.0942 78.6667 236 1.4241 0.0604 1.4248 1.1937
0.0942 79.3333 238 1.7210 0.0070 1.7217 1.3121
0.069 80.0 240 1.8527 0.0099 1.8534 1.3614
0.069 80.6667 242 1.6912 0.0163 1.6919 1.3007
0.069 81.3333 244 1.5813 0.0285 1.5820 1.2578
0.069 82.0 246 1.5497 0.0176 1.5504 1.2452
0.069 82.6667 248 1.6654 0.0276 1.6662 1.2908
0.0599 83.3333 250 1.6289 0.0167 1.6297 1.2766
0.0599 84.0 252 1.5533 0.0376 1.5541 1.2466
0.0599 84.6667 254 1.5454 0.0400 1.5462 1.2435
0.0599 85.3333 256 1.5764 0.0277 1.5771 1.2558
0.0599 86.0 258 1.5978 0.0233 1.5986 1.2643
0.0523 86.6667 260 1.5541 0.0269 1.5549 1.2470
0.0523 87.3333 262 1.5125 0.0371 1.5133 1.2301
0.0523 88.0 264 1.4808 0.0236 1.4816 1.2172
0.0523 88.6667 266 1.5303 0.0261 1.5310 1.2374
0.0523 89.3333 268 1.5621 0.0240 1.5630 1.2502
0.0658 90.0 270 1.6408 0.0075 1.6417 1.2813
0.0658 90.6667 272 1.6875 0.0074 1.6884 1.2994
0.0658 91.3333 274 1.6678 0.0067 1.6686 1.2918
0.0658 92.0 276 1.6405 0.0114 1.6414 1.2812
0.0658 92.6667 278 1.5920 0.0265 1.5928 1.2621
0.0493 93.3333 280 1.5526 0.0190 1.5534 1.2464
0.0493 94.0 282 1.4926 0.0157 1.4934 1.2220
0.0493 94.6667 284 1.4909 0.0157 1.4918 1.2214
0.0493 95.3333 286 1.4998 0.0131 1.5006 1.2250
0.0493 96.0 288 1.5467 0.0224 1.5475 1.2440
0.0602 96.6667 290 1.6004 0.0208 1.6012 1.2654
0.0602 97.3333 292 1.6359 0.0121 1.6367 1.2793
0.0602 98.0 294 1.6481 0.0144 1.6490 1.2841
0.0602 98.6667 296 1.6502 0.0136 1.6510 1.2849
0.0602 99.3333 298 1.6409 0.0222 1.6417 1.2813
0.0521 100.0 300 1.6350 0.0231 1.6358 1.2790

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold2

Finetuned
(2422)
this model