ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold1
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5770
- Qwk: -0.0102
- Mse: 1.5770
- Rmse: 1.2558
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.6667 | 2 | 10.3529 | 0.0018 | 10.3505 | 3.2172 |
No log | 1.3333 | 4 | 9.3009 | 0.0 | 9.2987 | 3.0494 |
No log | 2.0 | 6 | 7.7248 | 0.0 | 7.7230 | 2.7790 |
No log | 2.6667 | 8 | 5.9605 | 0.0031 | 5.9591 | 2.4411 |
5.5544 | 3.3333 | 10 | 4.5198 | 0.0002 | 4.5186 | 2.1257 |
5.5544 | 4.0 | 12 | 3.4780 | -0.0003 | 3.4774 | 1.8648 |
5.5544 | 4.6667 | 14 | 2.5786 | 0.0051 | 2.5780 | 1.6056 |
5.5544 | 5.3333 | 16 | 1.8068 | 0.0670 | 1.8067 | 1.3441 |
5.5544 | 6.0 | 18 | 1.5352 | 0.0211 | 1.5351 | 1.2390 |
1.9982 | 6.6667 | 20 | 1.7358 | 0.0337 | 1.7355 | 1.3174 |
1.9982 | 7.3333 | 22 | 1.9982 | 0.0321 | 1.9978 | 1.4134 |
1.9982 | 8.0 | 24 | 1.7746 | 0.0223 | 1.7744 | 1.3321 |
1.9982 | 8.6667 | 26 | 1.5984 | 0.0211 | 1.5983 | 1.2642 |
1.9982 | 9.3333 | 28 | 1.4154 | 0.0 | 1.4154 | 1.1897 |
1.8589 | 10.0 | 30 | 1.4647 | 0.0211 | 1.4647 | 1.2102 |
1.8589 | 10.6667 | 32 | 1.5804 | 0.0340 | 1.5802 | 1.2571 |
1.8589 | 11.3333 | 34 | 1.5855 | 0.0365 | 1.5853 | 1.2591 |
1.8589 | 12.0 | 36 | 1.5530 | 0.0249 | 1.5528 | 1.2461 |
1.8589 | 12.6667 | 38 | 1.3469 | 0.0237 | 1.3468 | 1.1605 |
1.4702 | 13.3333 | 40 | 1.4722 | 0.0222 | 1.4721 | 1.2133 |
1.4702 | 14.0 | 42 | 1.6363 | 0.0229 | 1.6360 | 1.2791 |
1.4702 | 14.6667 | 44 | 1.1825 | 0.0278 | 1.1826 | 1.0875 |
1.4702 | 15.3333 | 46 | 1.4202 | 0.0190 | 1.4202 | 1.1917 |
1.4702 | 16.0 | 48 | 1.7132 | -0.0079 | 1.7130 | 1.3088 |
1.1655 | 16.6667 | 50 | 1.3832 | 0.0418 | 1.3832 | 1.1761 |
1.1655 | 17.3333 | 52 | 1.5787 | 0.0300 | 1.5786 | 1.2564 |
1.1655 | 18.0 | 54 | 1.2683 | 0.0573 | 1.2684 | 1.1262 |
1.1655 | 18.6667 | 56 | 1.2929 | 0.0637 | 1.2930 | 1.1371 |
1.1655 | 19.3333 | 58 | 1.0892 | 0.1211 | 1.0896 | 1.0438 |
0.7137 | 20.0 | 60 | 1.9000 | -0.0364 | 1.8998 | 1.3783 |
0.7137 | 20.6667 | 62 | 1.7891 | -0.0182 | 1.7889 | 1.3375 |
0.7137 | 21.3333 | 64 | 1.2000 | 0.0342 | 1.2003 | 1.0956 |
0.7137 | 22.0 | 66 | 1.2995 | -0.0064 | 1.2996 | 1.1400 |
0.7137 | 22.6667 | 68 | 1.4393 | 0.0176 | 1.4392 | 1.1997 |
0.4101 | 23.3333 | 70 | 1.7233 | -0.0046 | 1.7231 | 1.3127 |
0.4101 | 24.0 | 72 | 1.2892 | -0.0316 | 1.2894 | 1.1355 |
0.4101 | 24.6667 | 74 | 1.5396 | -0.0106 | 1.5396 | 1.2408 |
0.4101 | 25.3333 | 76 | 2.5072 | -0.0767 | 2.5065 | 1.5832 |
0.4101 | 26.0 | 78 | 1.6807 | 0.0149 | 1.6805 | 1.2963 |
0.2601 | 26.6667 | 80 | 1.1640 | 0.0113 | 1.1644 | 1.0791 |
0.2601 | 27.3333 | 82 | 1.4648 | 0.0634 | 1.4648 | 1.2103 |
0.2601 | 28.0 | 84 | 2.8001 | -0.0259 | 2.7993 | 1.6731 |
0.2601 | 28.6667 | 86 | 2.1999 | -0.0118 | 2.1994 | 1.4830 |
0.2601 | 29.3333 | 88 | 1.1820 | 0.0836 | 1.1823 | 1.0873 |
0.3036 | 30.0 | 90 | 1.1431 | 0.0400 | 1.1434 | 1.0693 |
0.3036 | 30.6667 | 92 | 1.7733 | 0.0415 | 1.7731 | 1.3316 |
0.3036 | 31.3333 | 94 | 2.0864 | -0.0174 | 2.0861 | 1.4443 |
0.3036 | 32.0 | 96 | 1.3504 | 0.0533 | 1.3506 | 1.1622 |
0.3036 | 32.6667 | 98 | 1.1643 | -0.0324 | 1.1647 | 1.0792 |
0.2108 | 33.3333 | 100 | 1.5013 | 0.0502 | 1.5014 | 1.2253 |
0.2108 | 34.0 | 102 | 2.0350 | -0.0116 | 2.0348 | 1.4265 |
0.2108 | 34.6667 | 104 | 1.5465 | 0.0435 | 1.5466 | 1.2436 |
0.2108 | 35.3333 | 106 | 1.1923 | 0.0177 | 1.1927 | 1.0921 |
0.2108 | 36.0 | 108 | 1.3776 | 0.0574 | 1.3778 | 1.1738 |
0.1923 | 36.6667 | 110 | 1.9453 | 0.0188 | 1.9451 | 1.3947 |
0.1923 | 37.3333 | 112 | 1.5885 | 0.0627 | 1.5885 | 1.2604 |
0.1923 | 38.0 | 114 | 1.3998 | 0.0537 | 1.3999 | 1.1832 |
0.1923 | 38.6667 | 116 | 1.7313 | 0.0330 | 1.7312 | 1.3157 |
0.1923 | 39.3333 | 118 | 2.0607 | -0.0048 | 2.0604 | 1.4354 |
0.1707 | 40.0 | 120 | 1.5160 | 0.0697 | 1.5160 | 1.2313 |
0.1707 | 40.6667 | 122 | 1.4577 | 0.0436 | 1.4578 | 1.2074 |
0.1707 | 41.3333 | 124 | 1.5136 | 0.0651 | 1.5136 | 1.2303 |
0.1707 | 42.0 | 126 | 1.8107 | 0.0316 | 1.8105 | 1.3455 |
0.1707 | 42.6667 | 128 | 1.4629 | 0.0223 | 1.4630 | 1.2095 |
0.1369 | 43.3333 | 130 | 1.2161 | -0.0179 | 1.2166 | 1.1030 |
0.1369 | 44.0 | 132 | 1.3854 | -0.0178 | 1.3856 | 1.1771 |
0.1369 | 44.6667 | 134 | 2.0171 | -0.0423 | 2.0167 | 1.4201 |
0.1369 | 45.3333 | 136 | 1.9181 | -0.0324 | 1.9178 | 1.3848 |
0.1369 | 46.0 | 138 | 1.4862 | -0.0199 | 1.4862 | 1.2191 |
0.16 | 46.6667 | 140 | 1.5928 | -0.0171 | 1.5928 | 1.2621 |
0.16 | 47.3333 | 142 | 1.6610 | -0.0143 | 1.6609 | 1.2887 |
0.16 | 48.0 | 144 | 1.5311 | -0.0193 | 1.5311 | 1.2374 |
0.16 | 48.6667 | 146 | 1.7505 | -0.0011 | 1.7504 | 1.3230 |
0.16 | 49.3333 | 148 | 1.5794 | -0.0024 | 1.5794 | 1.2567 |
0.104 | 50.0 | 150 | 1.3268 | -0.0149 | 1.3271 | 1.1520 |
0.104 | 50.6667 | 152 | 1.5172 | -0.0027 | 1.5173 | 1.2318 |
0.104 | 51.3333 | 154 | 2.0114 | -0.0448 | 2.0111 | 1.4181 |
0.104 | 52.0 | 156 | 1.8186 | 0.0071 | 1.8185 | 1.3485 |
0.104 | 52.6667 | 158 | 1.2853 | -0.0310 | 1.2857 | 1.1339 |
0.1268 | 53.3333 | 160 | 1.1946 | -0.0212 | 1.1951 | 1.0932 |
0.1268 | 54.0 | 162 | 1.4147 | 0.0106 | 1.4149 | 1.1895 |
0.1268 | 54.6667 | 164 | 1.8034 | 0.0091 | 1.8032 | 1.3428 |
0.1268 | 55.3333 | 166 | 1.6681 | 0.0300 | 1.6679 | 1.2915 |
0.1268 | 56.0 | 168 | 1.3279 | 0.0 | 1.3281 | 1.1524 |
0.1468 | 56.6667 | 170 | 1.3805 | 0.0193 | 1.3806 | 1.1750 |
0.1468 | 57.3333 | 172 | 1.6188 | 0.0304 | 1.6187 | 1.2723 |
0.1468 | 58.0 | 174 | 1.5785 | 0.0336 | 1.5784 | 1.2563 |
0.1468 | 58.6667 | 176 | 1.4164 | 0.0090 | 1.4166 | 1.1902 |
0.1468 | 59.3333 | 178 | 1.5242 | 0.0149 | 1.5242 | 1.2346 |
0.0636 | 60.0 | 180 | 2.0118 | -0.0540 | 2.0114 | 1.4183 |
0.0636 | 60.6667 | 182 | 2.0617 | -0.0679 | 2.0612 | 1.4357 |
0.0636 | 61.3333 | 184 | 1.6843 | -0.0068 | 1.6841 | 1.2977 |
0.0636 | 62.0 | 186 | 1.2469 | -0.0510 | 1.2472 | 1.1168 |
0.0636 | 62.6667 | 188 | 1.1903 | -0.0510 | 1.1908 | 1.0912 |
0.1687 | 63.3333 | 190 | 1.3409 | -0.0253 | 1.3411 | 1.1581 |
0.1687 | 64.0 | 192 | 1.8264 | -0.0497 | 1.8261 | 1.3513 |
0.1687 | 64.6667 | 194 | 1.9955 | -0.0373 | 1.9950 | 1.4124 |
0.1687 | 65.3333 | 196 | 1.7072 | -0.0174 | 1.7069 | 1.3065 |
0.1687 | 66.0 | 198 | 1.3133 | -0.0287 | 1.3135 | 1.1461 |
0.1208 | 66.6667 | 200 | 1.2528 | -0.0263 | 1.2530 | 1.1194 |
0.1208 | 67.3333 | 202 | 1.3887 | 0.0025 | 1.3887 | 1.1784 |
0.1208 | 68.0 | 204 | 1.8347 | -0.0338 | 1.8343 | 1.3544 |
0.1208 | 68.6667 | 206 | 2.0260 | -0.0506 | 2.0255 | 1.4232 |
0.1208 | 69.3333 | 208 | 1.7850 | -0.0370 | 1.7847 | 1.3359 |
0.1477 | 70.0 | 210 | 1.3946 | -0.0017 | 1.3947 | 1.1810 |
0.1477 | 70.6667 | 212 | 1.2925 | -0.0429 | 1.2927 | 1.1370 |
0.1477 | 71.3333 | 214 | 1.3883 | 0.0108 | 1.3884 | 1.1783 |
0.1477 | 72.0 | 216 | 1.6016 | 0.0103 | 1.6015 | 1.2655 |
0.1477 | 72.6667 | 218 | 1.5561 | 0.0145 | 1.5561 | 1.2474 |
0.0812 | 73.3333 | 220 | 1.3847 | 0.0027 | 1.3848 | 1.1768 |
0.0812 | 74.0 | 222 | 1.3654 | -0.0054 | 1.3655 | 1.1686 |
0.0812 | 74.6667 | 224 | 1.4933 | 0.0175 | 1.4932 | 1.2220 |
0.0812 | 75.3333 | 226 | 1.6526 | -0.0016 | 1.6524 | 1.2855 |
0.0812 | 76.0 | 228 | 1.5718 | 0.0111 | 1.5717 | 1.2537 |
0.0714 | 76.6667 | 230 | 1.4865 | -0.0031 | 1.4865 | 1.2192 |
0.0714 | 77.3333 | 232 | 1.3780 | 0.0015 | 1.3781 | 1.1739 |
0.0714 | 78.0 | 234 | 1.4161 | -0.0057 | 1.4162 | 1.1900 |
0.0714 | 78.6667 | 236 | 1.5134 | -0.0003 | 1.5134 | 1.2302 |
0.0714 | 79.3333 | 238 | 1.5992 | -0.0004 | 1.5991 | 1.2646 |
0.0651 | 80.0 | 240 | 1.5982 | 0.0006 | 1.5981 | 1.2642 |
0.0651 | 80.6667 | 242 | 1.4708 | -0.0116 | 1.4709 | 1.2128 |
0.0651 | 81.3333 | 244 | 1.4396 | -0.0134 | 1.4397 | 1.1999 |
0.0651 | 82.0 | 246 | 1.4504 | -0.0120 | 1.4505 | 1.2044 |
0.0651 | 82.6667 | 248 | 1.5901 | 0.0051 | 1.5901 | 1.2610 |
0.0617 | 83.3333 | 250 | 1.6817 | -0.0054 | 1.6815 | 1.2967 |
0.0617 | 84.0 | 252 | 1.6204 | -0.0027 | 1.6203 | 1.2729 |
0.0617 | 84.6667 | 254 | 1.4757 | -0.0089 | 1.4758 | 1.2148 |
0.0617 | 85.3333 | 256 | 1.3973 | -0.0247 | 1.3975 | 1.1822 |
0.0617 | 86.0 | 258 | 1.4005 | -0.0202 | 1.4007 | 1.1835 |
0.061 | 86.6667 | 260 | 1.4672 | 0.0091 | 1.4673 | 1.2113 |
0.061 | 87.3333 | 262 | 1.5403 | 0.0158 | 1.5403 | 1.2411 |
0.061 | 88.0 | 264 | 1.5752 | 0.0137 | 1.5752 | 1.2551 |
0.061 | 88.6667 | 266 | 1.5596 | 0.0147 | 1.5596 | 1.2488 |
0.061 | 89.3333 | 268 | 1.4976 | -0.0003 | 1.4977 | 1.2238 |
0.0589 | 90.0 | 270 | 1.5031 | -0.0004 | 1.5032 | 1.2260 |
0.0589 | 90.6667 | 272 | 1.5352 | -0.0049 | 1.5353 | 1.2391 |
0.0589 | 91.3333 | 274 | 1.5372 | -0.0086 | 1.5372 | 1.2398 |
0.0589 | 92.0 | 276 | 1.5574 | 0.0119 | 1.5574 | 1.2480 |
0.0589 | 92.6667 | 278 | 1.5288 | -0.0111 | 1.5289 | 1.2365 |
0.062 | 93.3333 | 280 | 1.5116 | -0.0054 | 1.5116 | 1.2295 |
0.062 | 94.0 | 282 | 1.4902 | -0.0083 | 1.4902 | 1.2208 |
0.062 | 94.6667 | 284 | 1.5044 | -0.0118 | 1.5045 | 1.2266 |
0.062 | 95.3333 | 286 | 1.5377 | -0.0084 | 1.5378 | 1.2401 |
0.062 | 96.0 | 288 | 1.5616 | -0.0165 | 1.5616 | 1.2497 |
0.0657 | 96.6667 | 290 | 1.5927 | -0.0101 | 1.5927 | 1.2620 |
0.0657 | 97.3333 | 292 | 1.6092 | 0.0078 | 1.6092 | 1.2686 |
0.0657 | 98.0 | 294 | 1.6031 | 0.0030 | 1.6031 | 1.2661 |
0.0657 | 98.6667 | 296 | 1.5915 | -0.0101 | 1.5915 | 1.2616 |
0.0657 | 99.3333 | 298 | 1.5822 | -0.0090 | 1.5823 | 1.2579 |
0.053 | 100.0 | 300 | 1.5770 | -0.0102 | 1.5770 | 1.2558 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for genki10/ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold1
Base model
google-bert/bert-base-uncased