ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5770
  • Qwk: -0.0102
  • Mse: 1.5770
  • Rmse: 1.2558

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.6667 2 10.3529 0.0018 10.3505 3.2172
No log 1.3333 4 9.3009 0.0 9.2987 3.0494
No log 2.0 6 7.7248 0.0 7.7230 2.7790
No log 2.6667 8 5.9605 0.0031 5.9591 2.4411
5.5544 3.3333 10 4.5198 0.0002 4.5186 2.1257
5.5544 4.0 12 3.4780 -0.0003 3.4774 1.8648
5.5544 4.6667 14 2.5786 0.0051 2.5780 1.6056
5.5544 5.3333 16 1.8068 0.0670 1.8067 1.3441
5.5544 6.0 18 1.5352 0.0211 1.5351 1.2390
1.9982 6.6667 20 1.7358 0.0337 1.7355 1.3174
1.9982 7.3333 22 1.9982 0.0321 1.9978 1.4134
1.9982 8.0 24 1.7746 0.0223 1.7744 1.3321
1.9982 8.6667 26 1.5984 0.0211 1.5983 1.2642
1.9982 9.3333 28 1.4154 0.0 1.4154 1.1897
1.8589 10.0 30 1.4647 0.0211 1.4647 1.2102
1.8589 10.6667 32 1.5804 0.0340 1.5802 1.2571
1.8589 11.3333 34 1.5855 0.0365 1.5853 1.2591
1.8589 12.0 36 1.5530 0.0249 1.5528 1.2461
1.8589 12.6667 38 1.3469 0.0237 1.3468 1.1605
1.4702 13.3333 40 1.4722 0.0222 1.4721 1.2133
1.4702 14.0 42 1.6363 0.0229 1.6360 1.2791
1.4702 14.6667 44 1.1825 0.0278 1.1826 1.0875
1.4702 15.3333 46 1.4202 0.0190 1.4202 1.1917
1.4702 16.0 48 1.7132 -0.0079 1.7130 1.3088
1.1655 16.6667 50 1.3832 0.0418 1.3832 1.1761
1.1655 17.3333 52 1.5787 0.0300 1.5786 1.2564
1.1655 18.0 54 1.2683 0.0573 1.2684 1.1262
1.1655 18.6667 56 1.2929 0.0637 1.2930 1.1371
1.1655 19.3333 58 1.0892 0.1211 1.0896 1.0438
0.7137 20.0 60 1.9000 -0.0364 1.8998 1.3783
0.7137 20.6667 62 1.7891 -0.0182 1.7889 1.3375
0.7137 21.3333 64 1.2000 0.0342 1.2003 1.0956
0.7137 22.0 66 1.2995 -0.0064 1.2996 1.1400
0.7137 22.6667 68 1.4393 0.0176 1.4392 1.1997
0.4101 23.3333 70 1.7233 -0.0046 1.7231 1.3127
0.4101 24.0 72 1.2892 -0.0316 1.2894 1.1355
0.4101 24.6667 74 1.5396 -0.0106 1.5396 1.2408
0.4101 25.3333 76 2.5072 -0.0767 2.5065 1.5832
0.4101 26.0 78 1.6807 0.0149 1.6805 1.2963
0.2601 26.6667 80 1.1640 0.0113 1.1644 1.0791
0.2601 27.3333 82 1.4648 0.0634 1.4648 1.2103
0.2601 28.0 84 2.8001 -0.0259 2.7993 1.6731
0.2601 28.6667 86 2.1999 -0.0118 2.1994 1.4830
0.2601 29.3333 88 1.1820 0.0836 1.1823 1.0873
0.3036 30.0 90 1.1431 0.0400 1.1434 1.0693
0.3036 30.6667 92 1.7733 0.0415 1.7731 1.3316
0.3036 31.3333 94 2.0864 -0.0174 2.0861 1.4443
0.3036 32.0 96 1.3504 0.0533 1.3506 1.1622
0.3036 32.6667 98 1.1643 -0.0324 1.1647 1.0792
0.2108 33.3333 100 1.5013 0.0502 1.5014 1.2253
0.2108 34.0 102 2.0350 -0.0116 2.0348 1.4265
0.2108 34.6667 104 1.5465 0.0435 1.5466 1.2436
0.2108 35.3333 106 1.1923 0.0177 1.1927 1.0921
0.2108 36.0 108 1.3776 0.0574 1.3778 1.1738
0.1923 36.6667 110 1.9453 0.0188 1.9451 1.3947
0.1923 37.3333 112 1.5885 0.0627 1.5885 1.2604
0.1923 38.0 114 1.3998 0.0537 1.3999 1.1832
0.1923 38.6667 116 1.7313 0.0330 1.7312 1.3157
0.1923 39.3333 118 2.0607 -0.0048 2.0604 1.4354
0.1707 40.0 120 1.5160 0.0697 1.5160 1.2313
0.1707 40.6667 122 1.4577 0.0436 1.4578 1.2074
0.1707 41.3333 124 1.5136 0.0651 1.5136 1.2303
0.1707 42.0 126 1.8107 0.0316 1.8105 1.3455
0.1707 42.6667 128 1.4629 0.0223 1.4630 1.2095
0.1369 43.3333 130 1.2161 -0.0179 1.2166 1.1030
0.1369 44.0 132 1.3854 -0.0178 1.3856 1.1771
0.1369 44.6667 134 2.0171 -0.0423 2.0167 1.4201
0.1369 45.3333 136 1.9181 -0.0324 1.9178 1.3848
0.1369 46.0 138 1.4862 -0.0199 1.4862 1.2191
0.16 46.6667 140 1.5928 -0.0171 1.5928 1.2621
0.16 47.3333 142 1.6610 -0.0143 1.6609 1.2887
0.16 48.0 144 1.5311 -0.0193 1.5311 1.2374
0.16 48.6667 146 1.7505 -0.0011 1.7504 1.3230
0.16 49.3333 148 1.5794 -0.0024 1.5794 1.2567
0.104 50.0 150 1.3268 -0.0149 1.3271 1.1520
0.104 50.6667 152 1.5172 -0.0027 1.5173 1.2318
0.104 51.3333 154 2.0114 -0.0448 2.0111 1.4181
0.104 52.0 156 1.8186 0.0071 1.8185 1.3485
0.104 52.6667 158 1.2853 -0.0310 1.2857 1.1339
0.1268 53.3333 160 1.1946 -0.0212 1.1951 1.0932
0.1268 54.0 162 1.4147 0.0106 1.4149 1.1895
0.1268 54.6667 164 1.8034 0.0091 1.8032 1.3428
0.1268 55.3333 166 1.6681 0.0300 1.6679 1.2915
0.1268 56.0 168 1.3279 0.0 1.3281 1.1524
0.1468 56.6667 170 1.3805 0.0193 1.3806 1.1750
0.1468 57.3333 172 1.6188 0.0304 1.6187 1.2723
0.1468 58.0 174 1.5785 0.0336 1.5784 1.2563
0.1468 58.6667 176 1.4164 0.0090 1.4166 1.1902
0.1468 59.3333 178 1.5242 0.0149 1.5242 1.2346
0.0636 60.0 180 2.0118 -0.0540 2.0114 1.4183
0.0636 60.6667 182 2.0617 -0.0679 2.0612 1.4357
0.0636 61.3333 184 1.6843 -0.0068 1.6841 1.2977
0.0636 62.0 186 1.2469 -0.0510 1.2472 1.1168
0.0636 62.6667 188 1.1903 -0.0510 1.1908 1.0912
0.1687 63.3333 190 1.3409 -0.0253 1.3411 1.1581
0.1687 64.0 192 1.8264 -0.0497 1.8261 1.3513
0.1687 64.6667 194 1.9955 -0.0373 1.9950 1.4124
0.1687 65.3333 196 1.7072 -0.0174 1.7069 1.3065
0.1687 66.0 198 1.3133 -0.0287 1.3135 1.1461
0.1208 66.6667 200 1.2528 -0.0263 1.2530 1.1194
0.1208 67.3333 202 1.3887 0.0025 1.3887 1.1784
0.1208 68.0 204 1.8347 -0.0338 1.8343 1.3544
0.1208 68.6667 206 2.0260 -0.0506 2.0255 1.4232
0.1208 69.3333 208 1.7850 -0.0370 1.7847 1.3359
0.1477 70.0 210 1.3946 -0.0017 1.3947 1.1810
0.1477 70.6667 212 1.2925 -0.0429 1.2927 1.1370
0.1477 71.3333 214 1.3883 0.0108 1.3884 1.1783
0.1477 72.0 216 1.6016 0.0103 1.6015 1.2655
0.1477 72.6667 218 1.5561 0.0145 1.5561 1.2474
0.0812 73.3333 220 1.3847 0.0027 1.3848 1.1768
0.0812 74.0 222 1.3654 -0.0054 1.3655 1.1686
0.0812 74.6667 224 1.4933 0.0175 1.4932 1.2220
0.0812 75.3333 226 1.6526 -0.0016 1.6524 1.2855
0.0812 76.0 228 1.5718 0.0111 1.5717 1.2537
0.0714 76.6667 230 1.4865 -0.0031 1.4865 1.2192
0.0714 77.3333 232 1.3780 0.0015 1.3781 1.1739
0.0714 78.0 234 1.4161 -0.0057 1.4162 1.1900
0.0714 78.6667 236 1.5134 -0.0003 1.5134 1.2302
0.0714 79.3333 238 1.5992 -0.0004 1.5991 1.2646
0.0651 80.0 240 1.5982 0.0006 1.5981 1.2642
0.0651 80.6667 242 1.4708 -0.0116 1.4709 1.2128
0.0651 81.3333 244 1.4396 -0.0134 1.4397 1.1999
0.0651 82.0 246 1.4504 -0.0120 1.4505 1.2044
0.0651 82.6667 248 1.5901 0.0051 1.5901 1.2610
0.0617 83.3333 250 1.6817 -0.0054 1.6815 1.2967
0.0617 84.0 252 1.6204 -0.0027 1.6203 1.2729
0.0617 84.6667 254 1.4757 -0.0089 1.4758 1.2148
0.0617 85.3333 256 1.3973 -0.0247 1.3975 1.1822
0.0617 86.0 258 1.4005 -0.0202 1.4007 1.1835
0.061 86.6667 260 1.4672 0.0091 1.4673 1.2113
0.061 87.3333 262 1.5403 0.0158 1.5403 1.2411
0.061 88.0 264 1.5752 0.0137 1.5752 1.2551
0.061 88.6667 266 1.5596 0.0147 1.5596 1.2488
0.061 89.3333 268 1.4976 -0.0003 1.4977 1.2238
0.0589 90.0 270 1.5031 -0.0004 1.5032 1.2260
0.0589 90.6667 272 1.5352 -0.0049 1.5353 1.2391
0.0589 91.3333 274 1.5372 -0.0086 1.5372 1.2398
0.0589 92.0 276 1.5574 0.0119 1.5574 1.2480
0.0589 92.6667 278 1.5288 -0.0111 1.5289 1.2365
0.062 93.3333 280 1.5116 -0.0054 1.5116 1.2295
0.062 94.0 282 1.4902 -0.0083 1.4902 1.2208
0.062 94.6667 284 1.5044 -0.0118 1.5045 1.2266
0.062 95.3333 286 1.5377 -0.0084 1.5378 1.2401
0.062 96.0 288 1.5616 -0.0165 1.5616 1.2497
0.0657 96.6667 290 1.5927 -0.0101 1.5927 1.2620
0.0657 97.3333 292 1.6092 0.0078 1.6092 1.2686
0.0657 98.0 294 1.6031 0.0030 1.6031 1.2661
0.0657 98.6667 296 1.5915 -0.0101 1.5915 1.2616
0.0657 99.3333 298 1.5822 -0.0090 1.5823 1.2579
0.053 100.0 300 1.5770 -0.0102 1.5770 1.2558

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k3_task1_organization_fold1

Finetuned
(2422)
this model