ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8308
  • Qwk: 0.0153
  • Mse: 1.8322
  • Rmse: 1.3536

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 12.0369 -0.0273 12.0357 3.4693
No log 2.0 4 9.4633 0.0 9.4626 3.0761
No log 3.0 6 7.6049 0.0 7.6043 2.7576
No log 4.0 8 6.1200 0.0394 6.1197 2.4738
5.8531 5.0 10 4.8031 0.0137 4.8029 2.1915
5.8531 6.0 12 3.7971 0.0038 3.7971 1.9486
5.8531 7.0 14 2.9654 0.0 2.9655 1.7221
5.8531 8.0 16 2.3844 0.1111 2.3847 1.5443
5.8531 9.0 18 2.0331 0.0319 2.0335 1.4260
2.2417 10.0 20 1.7194 0.0365 1.7199 1.3115
2.2417 11.0 22 1.5676 0.0302 1.5682 1.2523
2.2417 12.0 24 1.6589 0.0302 1.6595 1.2882
2.2417 13.0 26 1.6020 0.0302 1.6026 1.2660
2.2417 14.0 28 1.6796 0.0302 1.6803 1.2963
1.7667 15.0 30 2.0104 0.0707 2.0111 1.4181
1.7667 16.0 32 1.8425 0.0599 1.8432 1.3576
1.7667 17.0 34 1.6998 0.0355 1.7005 1.3040
1.7667 18.0 36 1.6369 0.0309 1.6376 1.2797
1.7667 19.0 38 1.9033 0.0547 1.9041 1.3799
1.4086 20.0 40 1.7512 0.0608 1.7521 1.3237
1.4086 21.0 42 1.6642 0.0402 1.6652 1.2904
1.4086 22.0 44 1.9396 0.0050 1.9407 1.3931
1.4086 23.0 46 2.6915 -0.0257 2.6927 1.6410
1.4086 24.0 48 1.6074 0.0326 1.6086 1.2683
0.825 25.0 50 1.4112 0.0872 1.4123 1.1884
0.825 26.0 52 2.1640 -0.0085 2.1654 1.4715
0.825 27.0 54 1.7786 0.0414 1.7800 1.3342
0.825 28.0 56 2.2321 -0.0188 2.2335 1.4945
0.825 29.0 58 2.3537 -0.0237 2.3550 1.5346
0.3847 30.0 60 1.8764 0.0021 1.8777 1.3703
0.3847 31.0 62 2.3506 -0.0218 2.3521 1.5336
0.3847 32.0 64 2.0331 -0.0125 2.0345 1.4264
0.3847 33.0 66 1.8347 -0.0136 1.8361 1.3550
0.3847 34.0 68 2.4934 -0.0734 2.4950 1.5796
0.1882 35.0 70 1.9518 -0.0191 1.9533 1.3976
0.1882 36.0 72 2.4960 -0.0770 2.4976 1.5804
0.1882 37.0 74 2.0666 -0.0314 2.0682 1.4381
0.1882 38.0 76 1.4082 0.0106 1.4096 1.1873
0.1882 39.0 78 1.9355 -0.0371 1.9370 1.3918
0.1584 40.0 80 2.0086 -0.0278 2.0101 1.4178
0.1584 41.0 82 2.1254 -0.0314 2.1269 1.4584
0.1584 42.0 84 2.0757 -0.0343 2.0772 1.4412
0.1584 43.0 86 1.8165 -0.0132 1.8178 1.3483
0.1584 44.0 88 2.1088 -0.0377 2.1102 1.4526
0.1235 45.0 90 1.5843 0.0297 1.5856 1.2592
0.1235 46.0 92 1.6366 0.0256 1.6379 1.2798
0.1235 47.0 94 2.0505 -0.0217 2.0520 1.4325
0.1235 48.0 96 1.6414 0.0389 1.6428 1.2817
0.1235 49.0 98 1.6070 0.0497 1.6083 1.2682
0.1145 50.0 100 2.4329 -0.0471 2.4346 1.5603
0.1145 51.0 102 2.5226 -0.0446 2.5243 1.5888
0.1145 52.0 104 1.6179 0.0373 1.6193 1.2725
0.1145 53.0 106 1.3149 0.0712 1.3162 1.1473
0.1145 54.0 108 1.6557 0.0193 1.6571 1.2873
0.1446 55.0 110 2.3991 -0.0183 2.4007 1.5494
0.1446 56.0 112 2.2054 -0.0162 2.2068 1.4855
0.1446 57.0 114 1.6303 0.0156 1.6316 1.2773
0.1446 58.0 116 1.2630 0.0890 1.2642 1.1244
0.1446 59.0 118 1.4344 0.0540 1.4357 1.1982
0.1445 60.0 120 1.9633 -0.0091 1.9649 1.4017
0.1445 61.0 122 1.9406 -0.0021 1.9421 1.3936
0.1445 62.0 124 1.5698 0.0287 1.5712 1.2535
0.1445 63.0 126 1.6071 0.0147 1.6085 1.2683
0.1445 64.0 128 1.6257 0.0053 1.6271 1.2756
0.0793 65.0 130 1.8527 -0.0048 1.8541 1.3617
0.0793 66.0 132 1.6608 0.0188 1.6622 1.2893
0.0793 67.0 134 1.6487 0.0233 1.6501 1.2846
0.0793 68.0 136 1.8753 0.0045 1.8767 1.3699
0.0793 69.0 138 1.8249 0.0138 1.8263 1.3514
0.0791 70.0 140 1.6280 0.0077 1.6294 1.2765
0.0791 71.0 142 1.7595 0.0256 1.7609 1.3270
0.0791 72.0 144 1.7854 0.0145 1.7869 1.3367
0.0791 73.0 146 1.6080 0.0223 1.6094 1.2686
0.0791 74.0 148 1.6178 0.0268 1.6192 1.2725
0.0593 75.0 150 1.9138 0.0195 1.9153 1.3839
0.0593 76.0 152 1.9964 0.0048 1.9979 1.4135
0.0593 77.0 154 1.7318 0.0332 1.7333 1.3165
0.0593 78.0 156 1.5459 0.0377 1.5473 1.2439
0.0593 79.0 158 1.6575 0.0342 1.6589 1.2880
0.063 80.0 160 1.8827 0.0202 1.8842 1.3727
0.063 81.0 162 1.9555 0.0209 1.9569 1.3989
0.063 82.0 164 1.8205 0.0137 1.8220 1.3498
0.063 83.0 166 1.8068 0.0151 1.8083 1.3447
0.063 84.0 168 1.8039 0.0201 1.8053 1.3436
0.0575 85.0 170 1.7190 0.0185 1.7204 1.3117
0.0575 86.0 172 1.7114 0.0224 1.7128 1.3088
0.0575 87.0 174 1.8460 0.0180 1.8474 1.3592
0.0575 88.0 176 2.0094 -0.0061 2.0109 1.4181
0.0575 89.0 178 2.0401 -0.0065 2.0416 1.4288
0.0587 90.0 180 1.9117 0.0064 1.9131 1.3832
0.0587 91.0 182 1.7337 0.0181 1.7351 1.3172
0.0587 92.0 184 1.6529 0.0279 1.6543 1.2862
0.0587 93.0 186 1.6662 0.0271 1.6675 1.2913
0.0587 94.0 188 1.7339 0.0189 1.7353 1.3173
0.0518 95.0 190 1.8113 0.0153 1.8126 1.3463
0.0518 96.0 192 1.8286 0.0189 1.8300 1.3528
0.0518 97.0 194 1.8246 0.0175 1.8260 1.3513
0.0518 98.0 196 1.8293 0.0153 1.8307 1.3530
0.0518 99.0 198 1.8348 0.0068 1.8362 1.3551
0.046 100.0 200 1.8308 0.0153 1.8322 1.3536

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold3

Finetuned
(2421)
this model