ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6688
  • Qwk: 0.0798
  • Mse: 1.6690
  • Rmse: 1.2919

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 11.8036 -0.0219 11.8032 3.4356
No log 2.0 4 9.4543 0.0005 9.4541 3.0748
No log 3.0 6 7.5752 0.0 7.5749 2.7523
No log 4.0 8 6.1170 0.0067 6.1167 2.4732
5.9959 5.0 10 4.8381 0.0102 4.8378 2.1995
5.9959 6.0 12 3.8420 0.0 3.8418 1.9600
5.9959 7.0 14 3.2353 0.0 3.2352 1.7987
5.9959 8.0 16 2.3429 0.1320 2.3429 1.5307
5.9959 9.0 18 1.8504 0.0411 1.8505 1.3603
2.2784 10.0 20 1.6708 0.0213 1.6708 1.2926
2.2784 11.0 22 1.4056 0.0107 1.4057 1.1856
2.2784 12.0 24 1.4469 0.0107 1.4470 1.2029
2.2784 13.0 26 1.4678 0.0107 1.4679 1.2116
2.2784 14.0 28 1.4902 0.0107 1.4903 1.2208
1.7634 15.0 30 1.5058 0.0107 1.5059 1.2272
1.7634 16.0 32 1.3240 0.0107 1.3242 1.1507
1.7634 17.0 34 1.6746 0.0163 1.6747 1.2941
1.7634 18.0 36 1.3913 0.0187 1.3915 1.1796
1.7634 19.0 38 1.2316 0.0170 1.2318 1.1099
1.4927 20.0 40 1.5749 0.0267 1.5750 1.2550
1.4927 21.0 42 1.5754 0.0344 1.5754 1.2552
1.4927 22.0 44 1.2014 0.0936 1.2016 1.0962
1.4927 23.0 46 1.8726 -0.0002 1.8725 1.3684
1.4927 24.0 48 1.6835 0.0228 1.6835 1.2975
1.0521 25.0 50 1.1252 0.1631 1.1255 1.0609
1.0521 26.0 52 1.4824 0.0591 1.4827 1.2176
1.0521 27.0 54 1.5195 0.0320 1.5198 1.2328
1.0521 28.0 56 1.5815 0.0111 1.5818 1.2577
1.0521 29.0 58 1.1740 0.1158 1.1745 1.0837
0.5879 30.0 60 1.5495 0.0154 1.5499 1.2450
0.5879 31.0 62 1.5259 0.0165 1.5263 1.2354
0.5879 32.0 64 1.6797 0.0150 1.6800 1.2961
0.5879 33.0 66 1.7852 0.0221 1.7854 1.3362
0.5879 34.0 68 1.3256 0.0816 1.3258 1.1514
0.2797 35.0 70 2.1394 0.0068 2.1393 1.4626
0.2797 36.0 72 2.0788 0.0164 2.0787 1.4418
0.2797 37.0 74 1.4404 0.0917 1.4406 1.2002
0.2797 38.0 76 2.0262 0.0136 2.0263 1.4235
0.2797 39.0 78 1.8784 0.0513 1.8785 1.3706
0.2315 40.0 80 1.3245 0.1323 1.3247 1.1510
0.2315 41.0 82 1.7096 0.0701 1.7096 1.3075
0.2315 42.0 84 1.7248 0.0842 1.7248 1.3133
0.2315 43.0 86 1.3965 0.1440 1.3965 1.1818
0.2315 44.0 88 1.9503 0.0575 1.9502 1.3965
0.1805 45.0 90 1.9117 0.0683 1.9116 1.3826
0.1805 46.0 92 1.4692 0.1345 1.4693 1.2122
0.1805 47.0 94 1.8481 0.0742 1.8481 1.3595
0.1805 48.0 96 1.7055 0.0650 1.7057 1.3060
0.1805 49.0 98 1.3218 0.1456 1.3222 1.1499
0.1404 50.0 100 1.6603 0.0836 1.6605 1.2886
0.1404 51.0 102 1.7183 0.0587 1.7186 1.3110
0.1404 52.0 104 1.4972 0.0796 1.4976 1.2238
0.1404 53.0 106 1.5214 0.0817 1.5218 1.2336
0.1404 54.0 108 1.8001 0.0543 1.8004 1.3418
0.1064 55.0 110 1.8255 0.0688 1.8257 1.3512
0.1064 56.0 112 1.5601 0.0924 1.5604 1.2492
0.1064 57.0 114 1.8597 0.0807 1.8598 1.3638
0.1064 58.0 116 1.7706 0.0920 1.7707 1.3307
0.1064 59.0 118 1.5674 0.1011 1.5676 1.2521
0.0972 60.0 120 1.6479 0.1030 1.6481 1.2838
0.0972 61.0 122 2.0275 0.0579 2.0275 1.4239
0.0972 62.0 124 1.9893 0.0644 1.9893 1.4104
0.0972 63.0 126 1.6465 0.0782 1.6466 1.2832
0.0972 64.0 128 1.6710 0.0732 1.6711 1.2927
0.0998 65.0 130 1.8190 0.0702 1.8191 1.3487
0.0998 66.0 132 1.5492 0.0797 1.5494 1.2448
0.0998 67.0 134 1.5774 0.0784 1.5776 1.2560
0.0998 68.0 136 1.8456 0.0557 1.8457 1.3586
0.0998 69.0 138 1.6691 0.0619 1.6693 1.2920
0.0848 70.0 140 1.5915 0.0675 1.5918 1.2616
0.0848 71.0 142 1.7273 0.0637 1.7275 1.3144
0.0848 72.0 144 1.5440 0.0725 1.5442 1.2427
0.0848 73.0 146 1.5512 0.0839 1.5515 1.2456
0.0848 74.0 148 1.7600 0.0690 1.7602 1.3267
0.0741 75.0 150 1.6885 0.0546 1.6887 1.2995
0.0741 76.0 152 1.6309 0.0715 1.6311 1.2771
0.0741 77.0 154 1.8321 0.0608 1.8321 1.3536
0.0741 78.0 156 1.8216 0.0671 1.8217 1.3497
0.0741 79.0 158 1.6690 0.0623 1.6691 1.2919
0.0649 80.0 160 1.6678 0.0689 1.6679 1.2915
0.0649 81.0 162 1.8035 0.0763 1.8036 1.3430
0.0649 82.0 164 1.8821 0.0607 1.8822 1.3719
0.0649 83.0 166 1.8157 0.0794 1.8159 1.3475
0.0649 84.0 168 1.6528 0.0742 1.6530 1.2857
0.0611 85.0 170 1.4986 0.0941 1.4988 1.2243
0.0611 86.0 172 1.5243 0.0801 1.5246 1.2347
0.0611 87.0 174 1.6910 0.0689 1.6912 1.3005
0.0611 88.0 176 1.8519 0.0530 1.8521 1.3609
0.0611 89.0 178 1.8470 0.0661 1.8472 1.3591
0.0689 90.0 180 1.7224 0.0709 1.7225 1.3125
0.0689 91.0 182 1.6250 0.0686 1.6252 1.2748
0.0689 92.0 184 1.5852 0.0852 1.5855 1.2591
0.0689 93.0 186 1.6203 0.0698 1.6205 1.2730
0.0689 94.0 188 1.6683 0.0696 1.6685 1.2917
0.0662 95.0 190 1.7378 0.0733 1.7380 1.3183
0.0662 96.0 192 1.7331 0.0733 1.7333 1.3166
0.0662 97.0 194 1.7048 0.0556 1.7050 1.3057
0.0662 98.0 196 1.6821 0.0715 1.6823 1.2970
0.0662 99.0 198 1.6706 0.0798 1.6708 1.2926
0.0677 100.0 200 1.6688 0.0798 1.6690 1.2919

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold2

Finetuned
(2421)
this model